Answer:
b. 2.28 M
Explanation:
The reaction of neutralization of NaOH with H2SO4 is:
2NaOH + H2SO4 → Na2SO4 + 2H2O
<em>Where 2 moles of NaOH react per mole of H2SO4</em>
<em />
To solve the concentration of NaOH we need to find the moles of H2SO4. Using the chemical equation we can find the moles of NaOH that react and with the volume the molar concentration as follows:
<em>Moles H2SO4:</em>
45.7mL = 0.0457L * (0.500mol/L) = 0.02285 moles H2SO4
<em>Moles NaOH:</em>
0.02285 moles H2SO4 * (2moles NaOH / 1 mol H2SO4) = 0.0457moles NaOH
<em>Molarity NaOH:</em>
0.0457moles NaOH / 0.020L =
2.28M
Right option:
<h3>b. 2.28 M</h3>
Answer:
he predicted the properties from known elements above and belws the unknown in the same group
Explanation:
What allowed Mendeleev to make predictions of undiscovered elements
He realized that an element on this table with one known element above it and one known element below it had to have properties between the two known elements
How did Mendeleev predict gallium and germanium?
Based on gaps in the periodic table Mendeleev deduced that in these gaps belonged elements yet to be discovered. Based on other elements below and above in the same group he predicted the existence of eka-aluminum, eka-boron, and eka-silicon, later to be named gallium (Ga), scandium (Sc), and germanium (Ge).
Argon is a suitable choice for light bulbs because it is inert. Compared to a reactive gas like oxygen, the metal filimant would burn up in a reactive environment, which is why a noble gas is used.
Carbon is located in the fourth group, second period. It is also in the nonmetal section of the table as well
Answer:
The atomic numbers of four elements A, B, C, and D are 6,8,10, and 12 respectively. The two elements which can react to form ionic bonds (or ionic compounds) are B (8= 2,6) and D (12 =2,8,2). So D donates its two electrons to B to fulfill their octet.
Explanation: