Answer:
Solution given:
heat[Q]=?
temperature [T]=0.64°C
specific heat capacity [c]=0.880 J/g °C
mass[m]=3g
we have
Q=mcT=3*0.880*0.64°=1.69Joule
<u>the</u><u> </u><u>required</u><u> heat </u><u>is</u><u> </u><u>1.69</u><u>Joule</u><u>.</u>
Answer:
1
Explanation:
I believe it really only has 1 valence electrons
Answer:
(a) Density of the air = 1.204 kg/m3
(b) Pressure = 93772 Pa or 0.703 mmHg
(c) Force needed to open the door = 15106 N
Explanation:
(a) The density of the air at 22 deg C and 1 atm can be calculated using the Ideal Gas Law:

First, we change the units of P to Pa and T to deg K:

Then we have

(b) To calculate the change in pressure, we use again the Ideal Gas law, expressed in another way:

(c) To calculate the force needed to open we have to multiply the difference of pressure between the inside of the freezer and the outside and the surface of the door. We also take into account that Pa = N/m2.

There are 10 millimeters in 1 centimeter
Answer:
Explanation:
<u>1. Chemical quation</u>
The reaction of aluminium, sodium hydroxide and water is represented by the balanced chemical equation:
- 2Al(s) + 2NaOH(s) + 6H₂O(l) → 2Na[Al(OH)₄] (aq) + 3H₂(g) ↑
The coefficients of each reactant and product give the theoretical mole ratios.
To find the limiting reactant you compare the theoretical ratios with the ratio of the available substaces.
<u>2. Theoretical mole ratio:</u>
- 2 mol Al : 2 mol NaOH : 6 mol H₂O
Equivalent to
- 1 mol Al : 1 mol NaOH : 3 mol H₂O
<u>3. Actual ratio</u>
a) Convert each mass to number of moles
Formula:
- number of moles = mass in grams / molar mass
Al:
- molar mass = atomic mass = 26.982g/mol
- number of moles = 51.0g / 26.982g/mol = 1.89 mol
NaOH:
- number of moles = 84.1g / 39.997g/mol = 2.10 mol
H₂O:
- number of moles = 25.0g / 18.015g/mol = 1.39 mol
Divide all the mole amounts by the least number:
- Al: 1.89/1.39 = 1.36
- NaOH: 2.10 = 1.52
- H₂O: 1.39 = 1.00
- 1.36 mol Al : 1.52 mol NaOH : 1.00 mol H₂O
<u>4. Comparison</u>
<u />
Theoretical ratio:
- 1 mol Al : 1 mol NaOH : 3 mol H₂O
Actual ratio:
- 1.36 mol Al : 1.52 mol NaOH : 1.00 mol H₂O
Multiply by 3:
- 4.08 mol Al : 4.56 mol NaOH : 3.00 mol H₂O
Now, yo can see that the first two are in excess with respect the third one, making that the water consumes first, before any of the other two consumes. Therefore, the limiting reactant is the water.