1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
prisoha [69]
4 years ago
13

Who may drive a vehicle in Texas?

Physics
2 answers:
olga55 [171]4 years ago
5 0

Answer:

Anyone

Explanation:

Anyone can drive a car if your (16) or older and have a permit or drivers license

nirvana33 [79]4 years ago
3 0

Answer:

Yes

Explanation:

You might be interested in
Pls help i’ll give brainliest if you give a correct answer!!
arsen [322]

Answer:

C. The distance traveled by an object at a certain velocity.

Explanation:

YW!

3 0
3 years ago
Read 2 more answers
what equastion do you use to solve Riders in a carnival ride stand with their backs against the wall of a circular room of diame
Hitman42 [59]

Answer:

μsmín = 0.1

Explanation:

  • There are three external forces acting on the riders, two in the vertical direction that oppose each other, the force due to gravity (which we call weight) and the friction force.
  • This friction force has a maximum value, that can be written as follows:

       F_{frmax} = \mu_{s} *F_{n} (1)

       where  μs is the coefficient of static friction, and Fn is the normal force,

       perpendicular to the wall and aiming to the center of rotation.

  • This force is the only force acting in the horizontal direction, but, at the same time, is the force that keeps the riders rotating, which is the centripetal force.
  • This force has the following general expression:

       F_{c} =  m* \omega^{2} * r (2)

       where ω is the angular velocity of the riders, and r the distance to the

      center of rotation (the  radius of the circle), and m the mass of the

      riders.

      Since Fc is actually Fn, we can replace the right side of (2) in (1), as

      follows:

     F_{frmax} = m* \mu_{s} * \omega^{2} * r (3)

  • When the riders are on the verge of sliding down, this force must be equal to the weight Fg, so we can write the following equation:

       m* g = m* \mu_{smin} * \omega^{2} * r (4)

  • (The coefficient of static friction is the minimum possible, due to any value less than it would cause the riders to slide down)
  • Cancelling the masses on both sides of (4), we get:

       g = \mu_{smin} * \omega^{2} * r (5)

  • Prior to solve (5) we need to convert ω from rev/min to rad/sec, as follows:

      60 rev/min * \frac{2*\pi rad}{1 rev} *\frac{1min}{60 sec} =6.28 rad/sec (6)

  • Replacing by the givens in (5), we can solve for μsmín, as follows:

       \mu_{smin} = \frac{g}{\omega^{2} *r}  = \frac{9.8m/s2}{(6.28rad/sec)^{2} *2.5 m} =0.1 (7)

5 0
3 years ago
The driver of a 1000 kg car traveling at a speed of 16.7 m/s applies the brakes. If the brakes provide a force of - 8000 N to st
RSB [31]

Answer:

Given:

m=1000kg

u= 16.7m/s

v=0m/s

F=8000N

Required:

s=?

Solution:

F=m × a

8000N=1000kg × a

a=8m/s^2

Since it decelerate a= -8m/s^2

v^2 = u^2 + 2as

s=v^2 - u^2 / 2a

s= 0 - (16.7m/s)^2 / 2 × -8m/s^2

s= -278.89/-16

s= 17.43m

The car travels approximately 17.43m before it stops

Please like and follow me

6 0
2 years ago
What would be the escape speed for a craft launched from a space elevator at a height of 54,000 km?
Natasha_Volkova [10]

Answer: 3.63 km/s

Explanation:

The escape velocity equation for a craft launched from the Earth surface is:

V_{e}=\sqrt{\frac{2GM}{R}}

Where:

V_{e} is the escape velocity

G=6.67(10)^{-11} Nm^{2}/kg^{2} is the Universal Gravitational constant

M=5.976(10)^{24}kg is the mass of the Earth

R=6371 km=6371000 m is the Earth's radius

However, in this situation the craft would be launched at a height h=54000 km=54000000 m over the Eart's surface with a space elevator. Hence, we have to add this height to the equation:

V_{e}=\sqrt{\frac{2GM}{R+h}}

V_{e}=\sqrt{\frac{2(6.67(10)^{-11} Nm^{2}/kg^{2})(5.976(10)^{24}kg)}{6371000 m+54000000 m}}

Finally:

V_{e}=3633.86 m/s \approx 3.63 km/s

7 0
3 years ago
HELP BRAINLIEST!!! I NEED HELP NOW
givi [52]

Answer:

1 kg at 1 m/s

Explanation:

less weight to propell it forward

7 0
3 years ago
Read 2 more answers
Other questions:
  • How fast do sound waves travel in air? How does this compare to the speed of light waves?
    8·1 answer
  • What is the mass of an object that requires 100N of force in order to accelerate it at 10m/s2 ?
    8·2 answers
  • What type of forces accelerate masses?
    6·1 answer
  • Suppose that after walking across a carpeted floor you reach for a doorknob and just before you touch it a spark jumps 0.95cm fr
    5·1 answer
  • If a ball is 10m high with what velocity will it fall?
    13·1 answer
  • What kind of radiation is emitted in the following nuclear reaction
    9·1 answer
  • One wave of 1 m amplitude meets another wave of 2 m amplitude. If they are exactly out of phase, what is the magnitude of the ne
    11·1 answer
  • Can some help with this? id appreciate your help :)
    12·1 answer
  • A 20 Ohm resistance is connected
    10·1 answer
  • a 1 kg ball is confined to move on a. vertical circle of a radius 2 meters. There is no friciton between the bead and the circul
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!