Answer:
The SI unit of intensity is the watt per square meter/metre (W/m^2.)
Explanation:
Intensity is equal to the power transferred per unit area. Since power is measured in watts (W) and 1 W = 1 J/s, then intensity can be viewed as how fast energy goes through a certain area.
In physics, intensity is often used when studying light, sound, or other phenomena that involve waves or energy transfer. (With waves, the power value is taken as the average power transfer over the wave's period.)
Answer:
Bone
Explanation:
Diagnostic radiology include the use of non-invasive imaging scans to diagnose a patient.
The voltages used in diagnostic tubes range from roughly 20 kV to 150 kV and thus the highest energies of the X-ray photons range from roughly 20 keV to 150 keV.
The tests and equipment used sometimes involves low doses of radiation to create highly detailed images of an area.
Answer:
It would crack.
Explanation: The pressure from dropping it would crush the eggshell therefore breaking the egg.
When the heat source is removed from a fluid, convection currents in the fluid will eventually distribute heat uniformly throughout the fluid. When all of the fluid is at the same temperature, convection currents will stop.