Answer:
a) v = 0.7071 v₀, b) v= v₀, c) v = 0.577 v₀, d) v = 1.41 v₀, e) v = 0.447 v₀
Explanation:
The speed of a wave along an eta string given by the expression
v = 
where T is the tension of the string and μ is linear density
a) the mass of the cable is double
m = 2m₀
let's find the new linear density
μ = m / l
iinitial density
μ₀ = m₀ / l
final density
μ = 2m₀ / lo
μ = 2 μ₀
we substitute in the equation for the velocity
initial v₀ =
with the new dough
v =
v = 1 /√2 \sqrt{ \frac{T_o}{ \mu_o} }
v = 1 /√2 v₀
v = 0.7071 v₀
b) we double the length of the cable
If the cable also increases its mass, the relationship is maintained
μ = μ₀
in this case the speed does not change
c) the cable l = l₀ and m = 3m₀
we look for the density
μ = 3m₀ / l₀
μ = 3 m₀/l₀
μ = 3 μ₀
v =
v = 1 /√3 v₀
v = 0.577 v₀
d) l = 2l₀
μ = m₀ / 2l₀
μ = μ₀/ 2
v =
v = √2 v₀
v = 1.41 v₀
e) m = 10m₀ and l = 2l₀
we look for the density
μ = 10 m₀/2l₀
μ = 5 μ₀
we look for speed
v =
v = 1 /√5 v₀
v = 0.447 v₀
Answer:
r2 = 1 m
therefore the electron that comes with velocity does not reach the origin, it stops when it reaches the position of the electron at x = 1m
Explanation:
For this exercise we must use conservation of energy
the electric potential energy is
U =
for the proton at x = -1 m
U₁ =
for the electron at x = 1 m
U₂ =
starting point.
Em₀ = K + U₁ + U₂
Em₀ =
final point
Em_f =
energy is conserved
Em₀ = Em_f
\frac{1}{2} m v^2 - k \frac{e^2}{r+1} + k \frac{e^2}{r-1} = k e^2 (- \frac{1}{r_2 +1} + \frac{1}{r_2 -1})
\frac{1}{2} m v^2 - k \frac{e^2}{r+1} + k \frac{e^2}{r-1} = k e²(
)
we substitute the values
½ 9.1 10⁻³¹ 450 + 9 10⁹ (1.6 10⁻¹⁹)² [
) = 9 109 (1.6 10-19) ²(
)
2.0475 10⁻²⁸ + 2.304 10⁻³⁷ (5.0125 10⁻³) = 4.608 10⁻³⁷ (
)
2.0475 10⁻²⁸ + 1.1549 10⁻³⁹ = 4.608 10⁻³⁷
r₂² -1 = (4.443 10⁸)⁻¹
r2 =
r2 = 1 m
therefore the electron that comes with velocity does not reach the origin, it stops when it reaches the position of the electron at x = 1m
A. Wedge
and
B.Screw
A screw is like an inclined plane wrapped around a pole or rod.
and a wedge looks kind of looks like this / and is inclined.
Hope this helps!
Please mark me brainliest! Thanks!
Hey there!
the answer is
C. a tennis racket striking a tennis ball
Thank you
Best regards
OFFICIALLYSAVAGE2003