1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zaharov [31]
3 years ago
14

An external resistor with resistance R is connected to a battery that has an emf E and an internal resistance r. Let P be the el

ectrical power output of the source. By conservation of energy, P is equal to the power consumed by R.
(a) What is the value of P in the limit that R is very small?

(b) What is the value of P in the limit that R is very large?
Physics
1 answer:
satela [25.4K]3 years ago
4 0

Answer:

a) When R is very small R << r, therefore the term R+ r will equal r and the current becomes  

b) When R is very large, R >> r, therefore the term R+ r will equal R and the current becomes

Explanation:

<u>Solution  :</u>

(a) We want to get the consumed power P when R is very small. The resistor in the circuit consumed the power from this battery. In this case, the current I is leaving the source at the higher-potential terminal and the energy is being delivered to the external circuit where the rate (power) of this transfer is given by equation  in the next form  

P=∈*I-I^2*r                (1)

Where the term ∈*I is the rate at which work is done by the battery and the term I^2*r is the rate at which electrical energy is dissipated in the internal resistance of the battery. The current in the circuit depends on the internal resistance r and we can apply equation to get the current by  

I=∈/R+r                     (2)

When R is very small R << r, therefore the term R+ r will equal r and the current becomes  

I= ∈/r

Now let us plug this expression of I into equation (1) to get the consumed power  

P=∈*I-I^2*r

 =I(∈-I*r)

 =0

The consumed power when R is very small is zero  

(b) When R is very large, R >> r, therefore the term R+ r will equal R and the current becomes  

I=∈/R

The dissipated power due toll could be calculated by using equation.

P=I^2*r                (3)

Now let us plug the expression of I into equation (3) to get P  

P=I^2*R=(∈/R)^2*R

 =∈^2/R

You might be interested in
A young hockey player stands at rest on the ice holding a 1.3-kg helmet. The player tosses the helmet directly in front of him w
navik [9.2K]

Answer

given,

initial speed of hockey player= 0 m/s

mass of the helmet, m = 1.3 Kg

initial speed of the helmet, u = 0 m/s

final speed of the helmet, v = 6 m/s

recoil speed of the hockey player, v' = 0.25 m/s

we need to calculate the mass of the hockey player, M = ?

using conservation of momentum

m u + M u' = M v' + m v

initial speed of ice skater is zero

1.3 x 0 + M x 0 =  M x (-0.25) + 1.3 x 6

negative sign is taken because recoil velocity is in opposite direction

0 = -0.25 M + 7.8

0.25 M = 7.8

M = 31.2 Kg

Hence, the mass of the young hockey player is equal to 31.2 Kg

5 0
3 years ago
What is the weight of a 4.2 kg bowling ball on Mars?
Nataliya [291]

What is the weight of a 4.2 kg bowling ball on Mars?

Answer:

1.59 kg

Explanation:

The formula is:

<u>F = G((Mm)/r2) </u>

F is the gravitational force between two objects,

G is the Gravitational Constant (6.674×10-11 Newtons x meters2 / kilograms2),

M is the planet's mass (kg),

m is your mass (kg), and

r is the distance (m) between the centers of the two masses (the planet's radius).

Hope this helps

--Jay

8 0
3 years ago
Nuclear waste disposal is one of the largest issues with nuclear power. Cesium-137 is one of the high level waste products in an
vodomira [7]

Answer:

A sample of 5.2 mg  decays to .65 mg or to 1/8 of its original amount.

1/8 = 1/2 * 1/2 * 1/2 or 3 half-lives.

3 * 30.07 = 90 yrs for 5.2 mg to decay to .65 mg

You can get these other numbers similarly:

5.2 / .0102 = 510  requires about 9  half-lives which is 30 * 9 = 270 yrs

7 0
3 years ago
Starting from rest, a disk rotates about its central axis with constant angular acceleration. in 6.00 s, it rotates 44.5 rad. du
Klio2033 [76]

a. The disk starts at rest, so its angular displacement at time t is

\theta=\dfrac\alpha2t^2

It rotates 44.5 rad in this time, so we have

44.5\,\mathrm{rad}=\dfrac\alpha2(6.00\,\mathrm s)^2\implies\alpha=2.47\dfrac{\rm rad}{\mathrm s^2}

b. Since acceleration is constant, the average angular velocity is

\omega_{\rm avg}=\dfrac{\omega_f+\omega_i}2=\dfrac{\omega_f}2

where \omega_f is the angular velocity achieved after 6.00 s. The velocity of the disk at time t is

\omega=\alpha t

so we have

\omega_f=\left(2.47\dfrac{\rm rad}{\mathrm s^2}\right)(6.00\,\mathrm s)=14.8\dfrac{\rm rad}{\rm s}

making the average velocity

\omega_{\rm avg}=\dfrac{14.8\frac{\rm rad}{\rm s}}2=7.42\dfrac{\rm rad}{\rm s}

Another way to find the average velocity is to compute it directly via

\omega_{\rm avg}=\dfrac{\Delta\theta}{\Delta t}=\dfrac{44.5\,\rm rad}{6.00\,\rm s}=7.42\dfrac{\rm rad}{\rm s}

c. We already found this using the first method in part (b),

\omega=14.8\dfrac{\rm rad}{\rm s}

d. We already know

\theta=\dfrac\alpha2t^2

so this is just a matter of plugging in t=12.0\,\mathrm s. We get

\theta=179\,\mathrm{rad}

Or to make things slightly more interesting, we could have taken the end of the first 6.00 s interval to be the start of the next 6.00 s interval, so that

\theta=44.5\,\mathrm{rad}+\left(14.8\dfrac{\rm rad}{\rm s}\right)t+\dfrac\alpha2t^2

Then for t=6.00\,\rm s we would get the same \theta=179\,\rm rad.

7 0
3 years ago
Carlos is making phosphorous trichloride using the equation below. He adds 15 g of phosphorus.
Degger [83]
Given:

The balanced chemical reaction of the synthesis of phosphorus trichloride:

2P + 3Cl2 ===> 2PCl3

Initial amount of phosphorus = 15 grams

The amount of product produced from 15 grams of phosphorus:

15 grams / 31 g/mol * (2/2) = 66.46 grams PCl3 

The amount of chlorine is 44.31 grams, nearest to 45 grams. 
8 0
3 years ago
Read 2 more answers
Other questions:
  • You want to place a mirror at a blind turn on the staircase in your house. Which would be best suited for this purpose?
    11·2 answers
  • An example of diffusion in your everyday life
    12·1 answer
  • A bullet is fired through a board 13.0 cm thick in such a way that the bullet's line of motion is perpendicular to the face of t
    6·1 answer
  • What factor might be contributing to climate change
    10·1 answer
  • Change in speed over a given period of time is
    11·2 answers
  • The speedometer in your car reads 55 mi/h. This represents the what of the car
    6·2 answers
  • Which vector is the sum of vectors a and b
    13·1 answer
  • HELP WILL GIVE BRAINLEST!!
    11·1 answer
  • In the winter, monarch butterflies travel from the United States to Mexico, where the weather is warmer. They return to the Unit
    7·2 answers
  • Is India a rich country?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!