1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kakasveta [241]
2 years ago
7

It would be really helpful if u help me solving this question. PLEASE!!!

Physics
1 answer:
sweet [91]2 years ago
7 0

Answer: The students will determine the two fixed points of the thermometer:

Lower fixed point = 0 degree Celsius

Upper fixed point = 100 degree Celsius

Then divide the thermometer with equal intervals

The room temperature will be the point at which the themometric substance remains constant when rising from ice point.

Explanation:

Apparatus available:

Unmarked thermometer

250 cm3 glass beaker

crushed ice 

water

heatproof mat 

clamp, boss and stand

meter rule

Added apparatus

Bunsen burner

Stirrer

Method

The students will determine the two fixed points of the thermometer:

Lower fixed point = 0 degree Celsius

Upper fixed point = 100 degree Celsius

Then divide the thermometer with equal intervals

Procedures

Set up the apparatus of illustrated in the attached figure.

Immerse the unmarked thermometer into the ice in the beaker.

When the level indicated by the thermometric substance remains steady after some time, a mark will be made at that point. This mark will corresponds to the ice point (lower fixed point) and is assigned the value of 0 °C.

You may add little water and continue to stir gently.

The themometric substance will start to rise and stop when it reaches room temperature. Mark the point but do not assign any value

Place the beaker on bunsen burner and boil the water. The themometric substance will continue to rise and remain constant at upper fixed point

This mark will corresponds to the steam point (upper fixed point) and is assigned the value of 100 °C.

Divide between the lower fixed point and upper fixed point into equal intervals. Then you can see the value of room temperature.

You might be interested in
When one "throws” a punch, the forearm applies force to the fist. Consider a(n) 0.75 kg fist that goes from rest to a
deff fn [24]
Formula for acceleration

6 0
2 years ago
A baseball player hits a homerun, and the ball lands in the left field seats, which is 103m away from the point at which the bal
Sati [7]

(a) The ball has a final velocity vector

\mathbf v_f=v_{x,f}\,\mathbf i+v_{y,f}\,\mathbf j

with horizontal and vertical components, respectively,

v_{x,f}=\left(20.5\dfrac{\rm m}{\rm s}\right)\cos(-38^\circ)\approx16.2\dfrac{\rm m}{\rm s}

v_{y,f}=\left(20.5\dfrac{\rm m}{\rm s}\right)\sin(-38^\circ)\approx-12.6\dfrac{\rm m}{\rm s}

The horizontal component of the ball's velocity is constant throughout its trajectory, so v_{x,i}=v_{x,f}, and the horizontal distance <em>x</em> that it covers after time <em>t</em> is

x=v_{x,i}t=v_{x,f}t

It lands 103 m away from where it's hit, so we can determine the time it it spends in the air:

103\,\mathrm m=\left(16.2\dfrac{\rm m}{\rm s}\right)t\implies t\approx6.38\,\mathrm s

The vertical component of the ball's velocity at time <em>t</em> is

v_{y,f}=v_{y,i}-gt

where <em>g</em> = 9.80 m/s² is the magnitude of the acceleration due to gravity. Solve for the vertical component of the initial velocity:

-12.6\dfrac{\rm m}{\rm s}=v_{y,i}-\left(9.80\dfrac{\rm m}{\mathrm s^2}\right)(6.38\,\mathrm s)\implies v_{y,i}\approx49.9\dfrac{\rm m}{\rm s}

So, the initial velocity vector is

\mathbf v_i=v_{x,i}\,\mathbf i+v_{y,i}\,\mathbf j=\left(16.2\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(49.9\dfrac{\rm m}{\rm s}\right)\,\mathbf j

which carries an initial speed of

\|\mathbf v_i\|=\sqrt{{v_{x,i}}^2+{v_{y,i}}^2}\approx\boxed{52.4\dfrac{\rm m}{\rm s}}

and direction <em>θ</em> such that

\tan\theta=\dfrac{v_{y,i}}{v_{x,i}}\implies\theta\approx\boxed{72.0^\circ}

(b) I assume you're supposed to find the height of the ball when it lands in the seats. The ball's height <em>y</em> at time <em>t</em> is

y=v_{y,i}t-\dfrac12gt^2

so that when it lands in the seats at <em>t</em> ≈ 6.38 s, it has a height of

y=\left(49.9\dfrac{\rm m}{\rm s}\right)(6.38\,\mathrm s)-\dfrac12\left(9.80\dfrac{\rm m}{\mathrm s^2}\right)(6.38\,\mathrm s)^2\approx\boxed{119\,\mathrm m}

6 0
3 years ago
Next, given the equivalent resistance,
Tju [1.3M]

Answer:

reg21

Explanation:

because i said so

7 0
3 years ago
How does a mathematical model help you understand the science concepts? Give an example.
sveta [45]
Usually describes a system by a set of variables in a set of equations established relationships between the variables and variables maybe of many types real or integer numbers Boolean values of strings for example
4 0
2 years ago
What is an example of strong nuclear force
Gnom [1K]
Dropping a nuke on another country.
3 0
3 years ago
Read 2 more answers
Other questions:
  • When are tides highest
    12·2 answers
  • A forensic scientist receives an unknown liquid. Upon close observation, it appears there may be small objects floating in the l
    9·1 answer
  • Which of the following would be more likely to utilize capitalism-based land management methods?
    10·2 answers
  • . Draw the sketches of two waves A and B such that wave A has twice the wavelength and half the amplitude of wave B.
    15·1 answer
  • Which term , when multiplied by mass, equals density ?
    5·2 answers
  • An electron is released form rest in a region of space where a uniform electric field is present. Joanna claims that its kinetic
    13·1 answer
  • A flat loop of wire consisting of a single turn of cross-sectional area 8.00 cm2 is perpendicular to a magnetic field that incre
    13·1 answer
  • An electron is moving at a speed of 2.50 ✕ 104 m/s in a circular path of radius of 3.0 cm inside a solenoid. The magnetic field
    15·1 answer
  • What occurs when light bends while passing from one medium to another?
    14·1 answer
  • A current carrying wire of length 50cm is positioned perpendicular to a uniform magnetic field
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!