Answer:
True
Explanation:
Significant digits include non-zero digits (unless the zero is between two non-zero numbers)
In 12,785.000, there are 5 non-zero digits:
1 2 7 8 5
Answer:
K = Ka/Kb
Explanation:
P(s) + (3/2) Cl₂(g) <-------> PCl₃(g) K = ?
P(s) + (5/2) Cl₂(g) <--------> PCl₅(g) Ka
PCl₃(g) + Cl₂(g) <---------> PCl₅(g) Kb
K = [PCl₃]/ ([P] [Cl₂]⁽³'²⁾)
Ka = [PCl₅]/ ([P] [Cl₂]⁽⁵'²⁾)
Kb = [PCl₅]/ ([PCl₃] [Cl₂])
Since [PCl₅] = [PCl₅]
From the Ka equation,
[PCl₅] = Ka ([P] [Cl₂]⁽⁵'²⁾)
From the Kb equation
[PCl₅] = Kb ([PCl₃] [Cl₂])
Equating them
Ka ([P] [Cl₂]⁽⁵'²⁾) = Kb ([PCl₃] [Cl₂])
(Ka/Kb) = ([PCl₃] [Cl₂]) / ([P] [Cl₂]⁽⁵'²⁾)
(Ka/Kb) = [PCl₃] / ([P] [Cl₂]⁽³'²⁾)
Comparing this with the equation for the overall equilibrium constant
K = Ka/Kb
<span>1s2, 2s2, 2p6, 3s2, 3p6, 3d5</span>
Answer: D
Explanation:
I assume you meant
.
- The atomic mass of potassium is 39.0983 g/mol.
- The atomic mass of sulfur is 32.065 g/mol.
- The atomic mass of oxygen is 15.9994 g/mol.
So, the formula mass of potassium sulfate is 2(39.0983)+32.065+4(15.9994)=174.2592 g/mol.
So, 5.00 moles have a mass of (5.00)(174.2592), which is about <u>870 g</u>