Answer:
7.23 J
Explanation:
Step 1: Given data
- Mass of graphite (m): 566.0 mg
- Initial temperature: 5.2 °C
- Final temperature: 23.2 °C
- Specific heat capacity of graphite (c): 0.710J·g⁻¹K⁻¹
Step 2: Calculate the energy required (Q)
We will use the following expression.
Q = c × m × ΔT
Q = 0.710J·g⁻¹K⁻¹ × 0.5660 g × (23.2°C-5.2°C)
Q = 7.23 J
7 moles of oxygen are in the sample.
According to the chemical formula, each mole of nickel tetracarbonyl contains 4 moles of C atoms. Simply convert it into a fraction by putting the original solution in the denominator and the diluted solution in the numerator if you need to determine the concentration ratio between two solutions. The V/n ratio for each gas must be the same if the two gases are at the same temperature and pressure. The volume ratio of two gases at the same temperature and pressure is equal to their molar ratio. The mole ratio of C to O is 1 : 1
Learn more about moles here brainly.com/question/10873665
#SPJ1.
Answer:
The correct answer:
8)- e)2, 2 dymetilpropane
9)- b) 2-chloropropane
10)- b) hydroxyl
See the explanation below, please.
Explanation:
In the cases of exercises 8 and 9:
Correspond to alkanes, having 3 carbons are named with the prefix prop and suffix anus. In 8 it has 2, 2 methyl groups in carbon and 9 in a 2-carbon chlorine group.
In the case of 10, it corresponds to a 3-carbon alcohol: suffix prop, and prefix ol: 2- propanol; in group 2 it has an OH group corresponding to alcohol (hydroxyl).
Answer:
c.
Explanation:
it is c.-1 because oxidation number of cl is-1
Answer:
They will both cool down overtime
Explanation:
Once you put something that is hot on something that is cold. They will both be hot, but overtime they will cool down. It can't stay hot forever.