1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
4vir4ik [10]
3 years ago
13

3. A football is kicked with a speed of 35 m/s at an angle of 40°.

Physics
1 answer:
jarptica [38.1K]3 years ago
4 0

a) 22.5 m/s

The initial vertical velocity is given by:

u_y = u sin \theta

where

u = 35 m/s is the initial speed

\theta=40^{\circ} is the angle of projection of the ball

Substituting into the equation, we find

u_y = (35)(sin 40)=22.5 m/s

b) 26.8 m/s

The initial horizontal velocity is given by:

u_x = u cos \theta

where

u = 35 m/s is the initial speed

\theta=40^{\circ} is the angle of projection of the ball

Substituting into the equation, we find

u_x = (35)(cos 40)=26.8 m/s

c) 2.30 s

The time it takes for the ball to reach the maximum heigth can be found by considering the vertical motion only. This is a uniformly accelerated motion (free-fall), so we can use the suvat equation

v_y = u_y + at

where

v_y is the vertical velocity at time t

u_y = 22.5 m/s

a=g=-9.8 m/s^2 is the acceleration of gravity (negative because it is downward)

At the maximum height, the vertical velocity becomes zero, v_y =0; substituting, we find the time t at which this happens:

0=u_y + gt\\t=-\frac{u_y}{g}=-\frac{22.5}{-9.8}=2.30 s

d) 25.8 m

The maximum height can also be found by considering the vertical motion only. We can use the following suvat equation:

s=u_y t + \frac{1}{2}gt^2

where

s is the vertical displacement at time t

u_y = 22.5 m/s

g=-9.8 m/s^2

Substituting t = 2.30 s, we find the displacement at maximum height, so the maximum height:

s=(22.5)(2.30)+\frac{1}{2}(-9.8)(2.30)^2=25.8 m

e) 123.3 m

In order to find how far does the ball lands, we have to consider the horizontal motion.

First of all, the time it takes for the ball to go back to the ground is twice the time needed for reaching the maximum height:

t=2(2.30 s)=4.60 s

Then, we consider the horizontal motion. There is no acceleration along this direction, so the horizontal velocity is constant:

v_x = 26.8 m/s

Therefore, the horizontal distance travelled during the whole motion is

d=v_x t = (26.8)(4.60)=123.3 m

So, the ball lands 123.3 m far from the initial point.

You might be interested in
Help plzzz itz importannnttt
krok68 [10]

Answer:

➢ ➢ ➢ ✔3. How did Nazis treat their enemies?✔3. How did Nazis treat their enemies?

4 0
2 years ago
Read 2 more answers
Charles law increases keep pressure constant then you observe blank
OLga [1]

If you decrease the pressure of a fixed amount of gas, its volume will increase.

7 0
3 years ago
In which case does viscosity play a dominant role? Case A: a typical bacterium (size ~ 1 mm1 mm and velocity ~ 20 mm/s20 mm/s) i
My name is Ann [436]

Answer:

Case A

Explanation:

given,

size of bacteria = 1 mm x 1 mm

velocity = 20 mm/s

size of the swimmer = 1.5 m x 1.5 m

velocity of swimmer = 3 m/s

Viscous force

F = \eta A \dfrac{dv}{dx}

for the bacteria

F = \eta \times 10^{-6}\times 20\times 10^{-3}

F =2\times 10^{-8} \eta\ N

for the swimmer

F = \eta \times 1.5^2\times 3

F =6.75 \eta\ N

from the above force calculation

In case B inertial force that represent mass is more than the inertial force in case of bacteria.

Viscous force is dominant in case of bacteria.

So, In Case A viscous force will be dominant.

5 0
3 years ago
Which is not an example of a scalar?<br><br> a. 2t/s<br> b. 3kg<br> c. 6.2m north<br> d. -100c
xxMikexx [17]
C because I’m a teacher
4 0
3 years ago
A 3.0-kg block starts at rest at the top of a 37° incline, which is 5.0 m long. Its speed when it reaches the bottom is 2.0 m/s.
Mama L [17]

Answer: f_{r} = 16.49N

Explanation: The object is placed on an inclined plane at an angle of 37° thus making it weight have two component,

W_{x} = horizontal component of the weight = mgsinФ

W_{y} = vertical component of weight = mgcosФ

Due to the way the object is positioned, the horizontal component of force will accelerate the object thus acting as an applied force.

by using newton's law of motion, we have that

mgsinФ - f_{r} = ma

where m = mass of object=5kg

a = acceleration= unknown

Ф = angle of inclination = 37°

g = acceleration due to gravity = 9.8m/s^{2}

f_{r} = frictional force = unknown

we need to first get the acceleration before the frictional force which is gotten by using the equation below

v^{2} = u^{2} + 2aS

where v = final velocity = 2m/s

u = initial velocity = 0m/s (because the object started from rest)

a= unknown

S= distance covered = length of plane = 5m

2^{2} = 0^{2} + 2*a*5\\\\4= 10 *a\\\\a = \frac{4}{10} \\a = 0.4m/s^{2}

we slot in a into the equation below to get frictional force

mgsinФ - f_{r} = ma

3 * 9.8 * sin 37 - f_{r} = 3* 0.4

17.9633 - f_{r} =  1.2

f_{r} = 17.9633 - 1.2

f_{r} = 16.49N

4 0
3 years ago
Other questions:
  • Can someone help me with these physics questions?
    10·1 answer
  • a gas exerts less pressure when it has a a. smaller volume b. lower temperature c. higher temperature d. two of the above
    14·1 answer
  • A 1.0-kilogram ball is dropped from the roof of a building 40. meters tall. What is the approximate time of fall? [Neglect air r
    15·2 answers
  • Captain American throws his shield straight down off a roof with a speed of 50 m/s . What is the acceleration of the shield half
    11·1 answer
  • A nonconducting rod of length L = 8.15 cm has charge –q = -4.23 fC uniformly distributed along its length.(a) What is the linear
    5·1 answer
  • Calculate the momentum for the 5 kg bowling ball moving at 6 m/s.
    14·1 answer
  • Explain melting and freezing using the kinetic theory of matter​
    8·2 answers
  • The breakdown of rocks by chemical action of air and water is called
    5·2 answers
  • If you travel 450 meters in 40 seconds, what is your average speed in meters per
    12·1 answer
  • The change in momentum that occurs when a 1. 0 kg ball traveling at 4. 0 m/s strikes a wall and bounces back at 2. 0 m/s is.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!