Solution :
Given :
Mass attached to the spring = 4 kg
Mass dropped = 6 kg
Force constant = 100 N/m
Initial amplitude = 2 m
Therefore,
a). 

= 10 m/s
Final velocity, v at equilibrium position, v = 5 m/s
Now, 
A' = amplitude = 1.4142 m
b). 
m' = 2m
Hence, 
c). 

Therefore, factor 
Thus, the energy will change half times as the result of the collision.
consider the motion along the horizontal direction :
v₀ = initial velocity in horizontal direction as the ball rolls off the table = 3.0 m/s
X = horizontal displacement of the ball = 2.0 m
a = acceleration along the horizontal direction = 0 m/s²
t = time taken to land = ?
using the kinematics equation
X = v₀ t + (0.5) a t²
2.0 = 3.0 t + (0.5) (0) t²
t = 2/3
consider the motion of the ball along the vertical direction
v₀ = initial velocity in vertical direction as the ball rolls off the table = 0 m/s
Y = vertical displacement of the ball = height of the table = h
a = acceleration along the vertical direction = 9.8 m/s²
t = time taken to land = 2/3
using the kinematics equation
Y = v₀ t + (0.5) a t²
h = 0 t + (0.5) (9.8) (2/3)²
h = 2.2 m
C 2.2 m
Answer:
1.01 × 1013 picometres
Explanation:
multiply the length value by 1e+9
<h2>Answer with Explanation </h2>
Dalton’s theory can be classified by the following hypotheses:
1) All material was formed of particles, unbreakable and strong construction segments.
2) All particles of a given component are indistinguishable in volume and characteristics
3) Compounds are determined by a mixture of two or more distinct kinds of atoms.
4) Chemical responses appeared in the rearrangement of the reacting atoms.
This theory was to explain all matter in terms of atoms and their characteristics, the law of conservation of volume and the law of constant composition.