The appropriate term is latent heat. This energy is released as the water changes state from a gas to liquid....a liquid to solid etc. the latent heat is either absorbed or given off by the water as it changes its physical state. Latent heat of fusion is associated with freezing a liquid or melting a solid.
Answer:
D. all atoms with an atomic number over 83
Constructive interference of two coherent waves will occur if the path difference is λ/2.
<h3>Constructive interference:</h3>
When two waves are in phase and their maxima add, a process known as constructive interference occurs where the combined amplitude of the two waves equals the sum of their individual amplitudes.
The resultant wave is created by adding the amplitudes of two waves that are in phase and traveling in the same direction. The waves in this instance are said to have experienced beneficial interference. The upward displacement of the medium is higher than the displacement of the two interfering pulses because upward displacement occurs when the waves experience constructive interference. When the phase difference between the waves is an even multiple of (180°), constructive interference happens.
Learn more about constructive interference here:
brainly.com/question/17329186
#SPJ4
Answer:
9) a = 25 [m/s^2], t = 4 [s]
10) a = 0.0875 [m/s^2], t = 34.3 [s]
11) t = 32 [s]
Explanation:
To solve this problem we must use kinematics equations. In this way we have:
9)
a)

where:
Vf = final velocity = 0
Vi = initial velocity = 100 [m/s]
a = acceleration [m/s^2]
x = distance = 200 [m]
Note: the final speed is zero, as the car stops completely when it stops. The negative sign of the equation means that the car loses speed or slows down as it stops.
0 = (100)^2 - (2*a*200)
a = 25 [m/s^2]
b)
Now using the following equation:

0 = 100 - (25*t)
t = 4 [s]
10)
a)
To solve this problem we must use kinematics equations. In this way we have:

Note: The positive sign of the equation means that the car increases his speed.
5^2 = 2^2 + 2*a*(125 - 5)
25 - 4 = 2*a* (120)
a = 0.0875 [m/s^2]
b)
Now using the following equation:

5 = 2 + 0.0875*t
3 = 0.0875*t
t = 34.3 [s]
11)
To solve this problem we must use kinematics equations. In this way we have:

10^2 = 2^2 + 2*a*(200 - 10)
100 - 4 = 2*a* (190)
a = 0.25 [m/s^2]
Now using the following equation:

10 = 2 + 0.25*t
8 = 0.25*t
t = 32 [s]
Answer:
7.39 m or 3.61 m
Explanation:
= Wavelength
f = Frequency = 90 Hz
v = Speed of sound = 340 m/s
Path difference of the two waves is given by

Velocity of wave


So, the location from the worker is 7.39 m or 3.61 m