Answer:
0.75 m
Explanation:
Let's call the distance between the bulb and the mirror x.
The bulb and the length of the mirror form a triangle. The mirror and the illuminated area on the floor form a trapezoid. If we extend the lines from the mirror edge to the reflected image of the bulb, we turn that trapezoid into a large triangle. This triangle and the small triangle are similar. So we can say:
x / 0.4 = (3 + x) / 2
Solving for x:
2x = 0.4 (3 + x)
2x = 1.2 + 0.4 x
1.6 x = 1.2
x = 0.75
So the bulb should located no more than 0.75 m from the mirror.
Answer:
C
Explanation:
- Let acceleration due to gravity @ massive planet be a = 30 m/s^2
- Let acceleration due to gravity @ earth be g = 30 m/s^2
Solution:
- The average time taken for the ball to cover a distance h from chin to ground with acceleration a on massive planet is:
t = v / a
t = v / 30
- The average time taken for the ball to cover a distance h from chin to ground with acceleration g on earth is:
t = v / g
t = v / 9.81
- Hence, we can see the average time taken by the ball on massive planet is less than that on earth to reach back to its initial position. Hence, option C
Here Change in Kinetic Energy
= Work Done by Friction
Therefore, substituting the
given values to the equation, we get
0.5 * m * (vFinal^2 -
vInitial^2) = µ m g * d
Therefore
0.5*( 5.90^2 - Vfinal^2 ) =
0.100*9.8*2.10
Therefore
vfinal = 5.54 m/sec
<span> </span>
The body shivers to produce energy and it uses the energy to keep it warm. The body would stop shivering when it has produced enough energy to keep it warm and the atmosphere around it has got warmer
Answer:

Explanation:
Given the initial velocity of the clown, his mass and final height we can calculate the final kinetic energy using the <em><u>conservation of total mechanical energy</u></em>



Since 


