Answer:
hellooooo :) ur ans is 33.5 m/s
At time t, the displacement is h/2:
Δy = v₀ t + ½ at²
h/2 = 0 + ½ gt²
h = gt²
At time t+1, the displacement is h.
Δy = v₀ t + ½ at²
h = 0 + ½ g (t + 1)²
h = ½ g (t + 1)²
Set equal and solve for t:
gt² = ½ g (t + 1)²
2t² = (t + 1)²
2t² = t² + 2t + 1
t² − 2t = 1
t² − 2t + 1 = 2
(t − 1)² = 2
t − 1 = ±√2
t = 1 ± √2
Since t > 0, t = 1 + √2. So t+1 = 2 + √2.
At that time, the speed is:
v = at + v₀
v = g (2 + √2) + 0
v = g (2 + √2)
If g = 9.8 m/s², v = 33.5 m/s.
Answer:
Disruption to electricity power grid
Explanation:
We're looking a a solar flare. This will whip solar particles at high velocity into space and, If they are near earth, will interact with the earth's magnetic field. These magnetic changes will be measurable in the electric grid. Whether they are strong enough to cause "disruption" depends on a huge number of factors such as strength of and angles of the interacting magnetic fields and location of grid infrastructure,
We can solve the problem by requiring the equilibrium of the forces and the equilibrium of torques.
1) Equilibrium of forces:

where

is the weight of the person

is the weight of the scaffold
Re-arranging, we can write the equation as

(1)
2) Equilibrium of torques:

where 3 m and 2 m are the distances of the forces from the center of mass of the scaffold.
Using

and replacing T1 with (1), we find

from which we find

And then, substituting T2 into (1), we find
Answer:
Scientists have studied eclipses since ancient times. Aristotle observed that the Earth's shadow has a circular shape as it moves across the moon. He posited that this must mean the Earth was round. Another Greek astronomer named Aristarchus used a lunar eclipse to estimate the distance of the Moon and Sun from Earth
Answer:
The minimum speed must the car must be 13.13 m/s.
Explanation:
The radius of the loop is 17.6 m. We need to find the minimum speed must the car traverse the loop so that the rider does not fall out while upside down at the top.
We know that, mg be the weight of car and rider, which is equal to the centripetal force.

So, the minimum speed must the car must be 13.13 m/s.