Kinetic energy lost in collision is 10 J.
<u>Explanation:</u>
Given,
Mass,
= 4 kg
Speed,
= 5 m/s
= 1 kg
= 0
Speed after collision = 4 m/s
Kinetic energy lost, K×E = ?
During collision, momentum is conserved.
Before collision, the kinetic energy is

By plugging in the values we get,

K×E = 50 J
Therefore, kinetic energy before collision is 50 J
Kinetic energy after collision:


Since,
Initial Kinetic energy = Final kinetic energy
50 J = 40 J + K×E(lost)
K×E(lost) = 50 J - 40 J
K×E(lost) = 10 J
Therefore, kinetic energy lost in collision is 10 J.
Answer:
The value is 
Explanation:
From the question we are told that
The number of turns is N = 1000
The length is L = 50 cm = 0.50 m
The radius is r = 2.0 cm = 0.02 m
The current is I = 18.0 A
Generally the magnetic field is mathematically represented as

Here
is the permeability of free space with value

So

=> 
<h3>Answer;</h3>
- <em>The spheres develop opposite charges.
</em>
- <em>Electrons move from Sphere A to Sphere B.
</em>
- <em>The spheres are charged through induction.</em>
<h3><u>Explanation;</u></h3>
- <u><em>When a negatively charged rod is placed near two neutral metal spheres, the spheres will develop opposite charges, because the neutral metal spheres have both negative and positive charges. </em></u>From the basic law of electrostatics unlike charges attracts and like charges repel.
- Thus, <em><u>the sphere will develop opposite charges, electrons will move from Sphere A to sphere B,</u></em> hence we say that the spheres will be charged by induction such that sphere A will acquire a positive charge while sphere B will acquire negative charge.