Answer:
(b) B
Explanation:
The direction of force on a current carrying wire in a magnetic field can be found using the right hand rule, which states that-"stretch the thumb in the direction of the current, and point the fingers in the direction of magnetic field. The direction of palm will then give the direction of force on the wire
On wire B the forces due to A and C act in the same direction and so strengthen each other. they get added up because the forces act in the same direction.
on wires A and C the forces (due to B and C and A and B
respectively) act in opposite directions and therefore tend to cancel out.
My height is 178 centimeters.
My weight is 700N.
Explanation:
A train moves at a high velocity. Velocity is the rate of motion, speed or action. An example of velocity is a car driving at 75 miles per hour.
Answer:
i) No, the spring scale does not read a different value
ii) The torque will read a different value, it will reduce
iii) The spring scale does not need to be measured at the center of mass location.
Explanation:
The torque caused by the gyroscope can be given by the relation,
r × f

The torque measured by the gyroscope varies directly with the distance, r.
A decrease in the distance r will also cause a decrease in the value of the torque measured. When the distance, r is reduced from 7.5 inches to 5 inches, the torque caused by the gyroscope's weight also reduces.
The weight of the gyroscope remains constant despite the reduction in the distance because the weight of the gyroscope is not a function of the distance from the gyroscope. Therefore, the spring scale will not read a different value.
Yes, the spring scale does not need to be measured from the center of mass location because the weight does not depend on the location of measurement. The reading of the sprig scale remains constant.
Answer:
103.5m/5.5s= 18.8m/s
Explanation:
Formula for finding velocity average is:
v average= change in x(meters)/ change in time(seconds).