The density is determined on the steepness of the slope. The greater the density is bases upon the steepest slope. To conclude, I'd say Line A has the steepest slope therefore has the greatest density.
By applying Newton's second law of motion;
ma = mg - T
Where,
m = mass; a = downward accelerations (+ve value) or upward acceleration (-ve value); g = gravitational acceleration; T = tension.
For the current case, the velocity is constant therefore,
a = 0
Then,
0 = mg - T
T = mg = 115*9.81 = 1128.15 N
Tension in the cable is 1128.15 N.
Answer:
The detailed calculations are shown below;
Explanation:
a)The maximum acceleration of the particle:
It is seen that the maximum change in velocity is at the time between 8s to 10s.
Maximum acceleration: 
= 
= 10 m/
b) The deceleration of the particle
The velocity of particle is decreased after 10s so,
deceleration = - 
= - 6.67 m/
c)The total distance traveled by the particle = Area under the curve
=
* 4*20 + 4*20 +
* 2*20+ 2*20+
* 40*16
= 290 m
d)The average velocity of the particle = 
= 
= 18.12 m/s
B) <span>Scientific study of matter and how materials interact with each other at the atomic level
b/c chem has to do with atoms
</span>
P (momentum) = mass x velocity
p = .5 x 20
p = 10