Answer:
Explanation:
You are looking for the resistance to start with
W = E * E/R
75 = 240 * 240 / R
75 * R = 240 * 240
R = 240 * 240 / 75
R = 57600 / 75
R = 768
Now let's see what happens when you try putting this into 110
W = E^2 / R
W = 120^2 / 768
W = 18.75
So the wattage is rated at 75. 18.75 is a far cry from that. I think they intend you to set up a ratio of
18.75 / 75 = 0.25
This is the long sure way of solving it. The quick way is to realize that the voltage is the only thing that is going to change. 120 * 120 / (240 * 240) = 1/2*1/2 = 1/4 = 0.25
The force exerted by the magnetic in terms of the magnetic field is,
Where B is the magnetic fied strength and F is the force.
Thus, if the magnetic A has twice magnetic field strength than the magnet B,
Then,
Thus, the force exerted by the magnet B is,
Thus, the force exerted by the magnet B on magnet A is 50 N.
The force exerted by the magnet A exerts on the magnet B is exactly 100 N as given.
Hence, the option B is the correct answer.
The highest point<span> of the </span>pendulums<span> swing is when the potential energy is at its </span>highest<span> and the </span>kinetic energy<span> is at its lowest.</span>
Answer with Explanation:
We are given that
Mass of box=35 kg
Coefficient of static friction between box and truck bed=0.202
Acceleration due to gravity=
a.We have to find the force by which the box accelerates forward.
Force by which box accelerates=
Force by which box accelerates=
b.We have to find the maximum acceleration can the truck have before the box slides.
Force =friction force
Hence, the truck can have maximum acceleration before the box slide=
Calculate the magnetic field strength at the ground. Treat the transmission line as infinitely long. The magnetic field strength is then given by:
B = μ₀I/(2πr)
B = magnetic field strength, μ₀ = magnetic constant, I = current, r = distance from line
Given values:
μ₀ = 4π×10⁻⁷H/m, I = 170A, r = 8.0m
Plug in and solve for B:
B = 4π×10⁻⁷(170)/(2π(8.0))
B = 4.25×10⁻⁶T
The earth's magnetic field strength is 0.50G or 5.0×10⁻⁵T. Calculate the ratio of the line's magnetic field strength to earth's magnetic field strength:
4.25×10⁻⁶/(5.0×10⁻⁵)
= 0.085
= 8.5%
The transmission line's magnetic field strength is 8.5% of that of earth's natural magnetic field. This is no cause for worry.