<span>The four goals of psychology are: describe observed phenomena, explain them, predict what may occur as a result of them and control behaviour as a result. Julie’s psychologist has helped Julie control her behaviour - her fear response to spiders - so they have met the ‘control behaviour’ goal of psychology.</span>
Answer:
v = 5.9 x 10⁷ m/s
Explanation:
The kinetic energy of the electron in terms of potential difference is given as:
--------------- equation (1)
where,
e = charge on electron = 1.6 x 10⁻¹⁹ C
V = Potential Difference = 9.9 KV = 9900 Volts
The kinetic energy in general is given as:
--------- equation (2)
where,
m = mass of electron = 9.1 x 10⁻³¹ kg
v = speed of electron = ?
Therefore, comparing equation (1) and equation (2), we get:

<u>v = 5.9 x 10⁷ m/s</u>
The water outflow in 30 secs through 200 mm of the capillary tube is mathematically given as

<h3>What is the water outflow in 30 secs through 200 mm of the capillary tube?</h3>

Generally, the equation for Rate of flow of Liquid is mathematically given as

$$
Where dP is pressure difference r is the radius
is the viscosity of water
L is the length of the pipe


In $30s the quantity that flows out of the tube

In conclusion, the quantity that flows out of the tube

Read more about the flows rate
brainly.com/question/27880305
#SPJ1
<span>The correct answer should be B. a scientific law. A hypothesis is a belief by the scientist that may or may not be proven so it exists before evidence and observation, while a theory comes later. However, a law is observation itself and is always evidence of itself. There is no belief or lack of knowledge as to what will happen when it comes to laws. The law of action and reaction has plenty evidence and can easily be observed.</span>
Answer: a) 0.04kW = 40W
b) 0.05
Explanation:
A)
Thermal efficiency of the power cycle = Input / output
Input = 10 kW + 14,400 kJ/min = 10 kW + 14,400 kJ/(60s) = 10 kW + 14,400/60 kW.
Output = 10 kW
Thermal Efficiency = Output / Input = 10kW / 250kW = 0.04KW = 40W
B)
Maximum Thermal Efficiency of the power cycle = 1 - T1/T2
Where T1 = 285kelvin
And T2 = 300kelvin
Maximum Thermal Efficiency = 1 - T1/T2 = 1 - 285/300 = 0.05