<span>The half-life of 9 months is 0.75 years.
2.0 years is 2.0/0.75 = 2.67 half-lives.
Each half-life represents a reduction in the amount remaining by a factor of two, so:
A(t)/A(0) = 2^(-t/h)
where A(t) = amount at time t
h = half-life in some unit
t = elapsed time in the same unit
A(t)/A(0) = 2^(-2.67) = 0.157
15.7% of the original amount will remain after 2.0 years.
This is pretty easy one to solve. I was happy doing it.</span>
Answer:
The answer is
<h2>464 g</h2>
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
<h3>mass = Density × volume</h3>
From the question
volume of solution = 80 mL
density = 5.80 g/mL
The mass is
mass = 80 × 5.8
We have the final answer as
<h3>464 g</h3>
Hope this helps you
Answer: Celsius, Fahrenheit, Kelvin, and Rankine.
Hope this helped you!
Answer:

Explanation:
= Initial concentration = 1.28 M
= Final concentration = ![0.17[A]_0](https://tex.z-dn.net/?f=0.17%5BA%5D_0)
k = Rate constant = 0.0632 s
t = Time taken
For first order reaction we have the relation
![kt=\ln\dfrac{[A]_0}{[A]}\\\Rightarrow t=\dfrac{\ln\dfrac{[A]_0}{[A]}}{k}\\\Rightarrow t=\dfrac{\ln\dfrac{[A]_0}{0.17[A]_0}}{0.0632}\\\Rightarrow t=28.037\ \text{s}](https://tex.z-dn.net/?f=kt%3D%5Cln%5Cdfrac%7B%5BA%5D_0%7D%7B%5BA%5D%7D%5C%5C%5CRightarrow%20t%3D%5Cdfrac%7B%5Cln%5Cdfrac%7B%5BA%5D_0%7D%7B%5BA%5D%7D%7D%7Bk%7D%5C%5C%5CRightarrow%20t%3D%5Cdfrac%7B%5Cln%5Cdfrac%7B%5BA%5D_0%7D%7B0.17%5BA%5D_0%7D%7D%7B0.0632%7D%5C%5C%5CRightarrow%20t%3D28.037%5C%20%5Ctext%7Bs%7D)
Time taken to reach the required concentration would be
.
Answer:
D because as the seafloor grows wider, the continents on the opposite sides of the ridge move away from each other