1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katovenus [111]
3 years ago
11

Which color of light refracts at the greatest angle when white light is incident on a prism?

Physics
2 answers:
guapka [62]3 years ago
8 0

Answer:

violent

Explanation:

i got right on odyssey

antiseptic1488 [7]3 years ago
5 0
Red is refracted the least and violet is refracted the most
You might be interested in
Jeremy stands on the edge of a cliff. He throws three identical rocks with the same speed. Rock X is thrown vertically upward, r
Neko [114]

Answer:

All the three rocks will hit the ground with same speed.

Explanation:

For rocks X and Z, motion is along a straight line but in case of rock Y, motion is two dimensional. Since velocity is a vector it will be difficult for us to calculate the final velocity in each case. So we should find a way to solve this problems using a scalar which is related to velocity. The best and easy to use scalar related to velocity is kinetic energy. Since there is no air resistance, the total mechanical energy of the stone remains the same. Therefore we can use the concept of conservation of mechanical energy to solve this problem.

i.e. initial mechanical energy = final mechanical energy

let us take the edge of the cliff as initial position and ground as the final position.

We know that

Mechanical energy = Kinetic energy + Potential energy

Initial Mechanical energy = Initial Kinetic energy + Initial Potential energy

we know that

Potential energy = mgh

where,

m = mass of the body

g = acceleration due to gravity

h = height from ground

All the three rocks are identical and are thrown from same height. Therefore m and h are same for all the three which implies that the initial potential energy for all the three rocks is same.

Similarly, we know that

Kinetic energy = \frac{1}{2} mv^{2}

where,

m = mass of the body

v = velocity of the body

Since all the rocks are thrown with same speed, v is same for all the rocks. Thus initial kinetic energy is also same for all.

Since initial kinetic energy and Initial Potential energy is same for all the three, Initial Mechanical energy is also same for them.

Next let us consider the final position. At the ground h = 0. Therefore final potential energy of all the three rocks is 0. Thus they will be having only kinetic energy.

By conservation of mechanical energy,

initial mechanical energy = final mechanical energy

i.e.  Initial Kinetic energy + Initial Potential energy =  final Kinetic energy + final Potential energy

final potential energy = 0

thus,

Initial Mechanical energy = Initial Kinetic energy + Initial Potential energy = final Kinetic energy

Initial Mechanical energy = final Kinetic energy

Since Initial Mechanical energy is same for all the three, by the above equation final Kinetic energy is also same for all the three. Since here, kinetic energy is the function of only velocity, final velocity is also same for all the three rocks.

i.e. all the three rocks will hit the ground with same speed.

7 0
3 years ago
The radius of an atom is closest in size to a
ioda

the radius of the entire atom was 0.00000001 cm.

8 0
3 years ago
Read 2 more answers
Why are some consolation visible to New York State observers at midnight during April , but not visible at midnight during Octob
Svetach [21]
"Midnight" means looking away from the Sun. But in 6 months from April to October the earth goes halfway around the Sun. So midnight in April and midnight in October are exactly opposite directions.
3 0
3 years ago
Plastics are used in millions of objects we use every day. Why are plastics NOT considered natural resources?
jeka57 [31]

Answer:

B

Explanation:

Yes plastic is artficial

4 0
3 years ago
Read 2 more answers
If you stood on a planet with four times the mass of Earth, and twice Earth's radius, how much would you weigh?
nikdorinn [45]

Answer:

1/4 times your earth's weight

Explanation:

assuming the Mass of earth = M

Radius of earth = R

∴ the mass of the planet= 4M

the radius of the planet = 4R

gravitational force of earth is given as = \frac{GM}{R^{2} }

where G is the gravitational constant

Gravitational force of the planet = \frac{G4M}{(4R)^{2} }

                                                       =\frac{G4M}{16R^{2} }

                                                       =\frac{GM}{4R^{2} }

recall, gravitational force of earth is given as = \frac{GM}{R^{2} }

∴Gravitational force of planet = 1/4 times the gravitational force of the earth

you would weigh 1/4 times your earth's weight

3 0
3 years ago
Other questions:
  • A projectile is launched at an angle into the air at velocity v and angle θ. Determine its vertical acceleration.
    8·2 answers
  • Need help asap ‼️ 20 pts
    11·1 answer
  • Determine the maximum height and range of a projectile fired at a height of 6 feet above the ground with an initial velocity of
    15·1 answer
  • The cable of a hoist has a cross-section of 80 mm 2 . The hoist is used to lift a crate weighing 500 kg. What is the stress in t
    6·1 answer
  • Which statement correctly compares the speed of light?
    13·2 answers
  • A 1.8 kg book had been dropped from the top of the football stadium. It's speed is 4.8 m/s when it is 2.9 meters above the groun
    8·1 answer
  • NEED HELP QUICK!
    8·2 answers
  • Which of the following is not a measurement taken by a radiosonde?
    5·2 answers
  • Why is it important to have a strong core (mid section)?
    10·1 answer
  • Which of the following describes an electric current?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!