<u>Answer:</u> The given number in scientific notation is 
<u>Explanation:</u>
Scientific notation is the notation where a number is expressed in the decimal form. This means that the number is always written in the power of 10 form. The numerical digit lies between 0.1.... to 9.9.....
If the decimal is shifting to right side, the power of 10 is negative and if the decimal is shifting to left side, the power of 10 is positive.
We are given:
A number having value = 0.000000093425
Converting this into scientific notation, we get:

Hence, the given number in scientific notation is 
A halide ion is a halogen atom bearing a negative charge. The halide anions are fluoride (F−), chloride (Cl−), bromide (Br−), iodide (I−) and astatide (At−). Such ions are present in all ionic halide salts. Halide minerals contain halides.
Answer: Km = 10μM
Explanation: <u>Michaelis-Menten constant</u> (Km) measures the affinity a enzyme has to its substrate, so it can be known how well an enzyme is suited to the substrate being used. To determine Km another value associated to an eznyme is important: <em>Turnover number (Kcat)</em>, which is the number of time an enzyme site converts substrate into product per unit time.
Enzyme veolcity is calculated as:
![V_{0} = \frac{E_{t}.K_{cat}.[substrate]}{K_{m}+[substrate]}](https://tex.z-dn.net/?f=V_%7B0%7D%20%3D%20%5Cfrac%7BE_%7Bt%7D.K_%7Bcat%7D.%5Bsubstrate%5D%7D%7BK_%7Bm%7D%2B%5Bsubstrate%5D%7D)
where Et is concentration of enzyme catalitic sites and has to have the same unit as velocity of enzyme, so Et = 20nM = 0.02μM;
To calculate Km:
![V_{0}*K_{m} + V_{0}*[substrate] = E_{t}.K_{cat}.[substrate]](https://tex.z-dn.net/?f=V_%7B0%7D%2AK_%7Bm%7D%20%2B%20V_%7B0%7D%2A%5Bsubstrate%5D%20%3D%20E_%7Bt%7D.K_%7Bcat%7D.%5Bsubstrate%5D)
![K_{m} = \frac{E_{t}.K_{cat}.[substrate]-V_{0}*[substrate]}{V_{0}}](https://tex.z-dn.net/?f=K_%7Bm%7D%20%3D%20%5Cfrac%7BE_%7Bt%7D.K_%7Bcat%7D.%5Bsubstrate%5D-V_%7B0%7D%2A%5Bsubstrate%5D%7D%7BV_%7B0%7D%7D)

Km = 10μM
<u>The Michaelis-Menten for the substrate SAD is </u><u>10μM</u><u>.</u>