Calculate the H positive from the pH equation: pH equals -log (H positive). This would be 10 to the -6.49. Let's call the acid HA. To calculate Ka in this equation, Ka equals H positive times A- over HA. HA is going to be the 0 0121. So, Ka=(10^-6.49)^2/0.0121. This equals 1.05*10^-13/0.0121. Ka then equals 8.65*10^-12.
A Ice age could occur in the near future causing a mass extinction this is due to global warming.
Answer is: because pure liquids (<span>shown in </span>chemical reactions<span> by appending (</span>l)<span> to the </span>chemical formula) and solids (<span>shown in </span>chemical equations by appending (s)<span> to the </span>chemical formula) not go in to he equilibrium constant expression, only gas state (shown in chemical reactions by appending (g) to the chemical formula) reactants and products go in to he equilibrium constant expression.
For example, equilibrium constant expression Kp for reaction:
A(s) + 2B(s) ⇄ 4C(g) + D(g).<span>
will be: Kp = [C]</span>⁴<span>·[D].
But for reaction </span>A(g) + 2B(g) ⇄ 4C(g) + D(g), will be:<span>
Kp = [C]</span>⁴<span>·[D] / [A]·[B]².</span>
5L O2 x 1 mol O2/ 22.4L O2 x 2 mol H20/ 1 mol O2 x 22.4L H20/ 1 mol H20 = 10 L H2O
For future reference though, since its at STP that means that the coefficient are in proportion. Since oxygen has a coefficient of 1 and water has a coefficient of 2 for every 1 liter of oxygen there is 2 liters of water. Hence you started with 5 liters and ended with 10