1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
UNO [17]
3 years ago
6

Write the types of lever with 5.5 example​

Physics
1 answer:
tekilochka [14]3 years ago
7 0

First class lever -- Teeter-totter, Oars on a boat, Catapult, Shoehorn, Scissors, Pair of pliers

Second class lever -- Wheelbarrow, Crowbar, Nut cracker, Doors or gates, bottle openers

Third class lever -- Tweezers, Stapler, Mousetrap, Broom, Hockey stick

You might be interested in
PLeaSe SoMeBodY HeLp
Lerok [7]
1). Oört Cloud
2). Kuiper Belt
3). asteroids
4). meteorite

Note: 
Your teacher doesn't need this information ! 
Your teacher needs for you to LEARN stuff.
You have the answers now, but until you memorize the information,
you haven't learned anything.
5 0
2 years ago
A uniformly charged ball of radius a and charge –Q is at the center of a hollowmetal shell with inner radius b and outer radius
vlabodo [156]

Answer:

<u>r < a:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Qr}{a^3}

<u>r = a:</u>

E = \frac{1}{4\pi a^2}\frac{Q}{\epsilon_0}

<u>a < r < b:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}

<u>r = b:</u>

E = \frac{1}{4\pi b^2}\frac{Q}{\epsilon_0}

<u>b < r < c:</u>

E = 0

<u>r = c:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{c^2}

<u>r < c:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}

Explanation:

Gauss' Law will be applied to each region to find the E-field.

\int \vec{E}d\vec{a} = \frac{Q_{encl}}{\epsilon_0}

An imaginary sphere is drawn with radius r, which is equal to the point where the E-field is asked. The area of this imaginary sphere is multiplied by E, and this is equal to the charge enclosed by this imaginary surface divided by ε0.

<u>r<a:</u>

Since the ball is uniformly charged and not hollow, then the enclosed charge can be found by the following method: If the total ball has a charge -Q and volume V, then the enclosed part of the ball has a charge Q_enc and volume V_enc. Then;

\frac{Q}{V} = \frac{Q_{encl}}{V_{encl}}\\\frac{Q}{\frac{4}{3}\pi a^3} = \frac{Q_{encl}}{\frac{4}{3}\pi r^3}\\Q_{encl} = \frac{Qr^3}{a^3}

Applying Gauss' Law:

E4\pi r^2 = \frac{-Qr^3}{\epsilon_0 a^3}\\E = -\frac{1}{4\pi \epsilon_0}\frac{Qr}{a^3}\\E = \frac{r}{4\pi a^3}\frac{Q}{\epsilon_0}

The minus sign determines the direction of the field, which is towards the center.

<u>At r = a: </u>

E = \frac{1}{4\pi a^2}\frac{Q}{\epsilon_0}

<u>At a < r < b:</u>

The imaginary surface is drawn between the inner surface of the metal sphere and the smaller ball. In this case the enclosed charge is equal to the total charge of the ball, -Q.

<u />E4\pi r^2 = \frac{-Q}{\epsilon_0}\\E = -\frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}<u />

<u>At r = b:</u>

<u />E = -\frac{1}{4\pi b^2}\frac{Q}{\epsilon_0}<u />

Again, the minus sign indicates the direction of the field towards the center.

<u>At b < r < c:</u>

The hollow metal sphere has a net charge of +2Q. Since the sphere is a conductor, all of its charges are distributed across its surface. No charge is present within the sphere. The smaller ball has a net charge of -Q, so the inner surface of the metal sphere must possess a net charge of +Q. Since the net charge of the metal sphere is +2Q, then the outer surface of the metal should possess +Q.

Now, the imaginary surface is drawn inside the metal sphere. The total enclosed charge in this region is zero, since the total charge of the inner surface (+Q) and the smaller ball (-Q) is zero. Therefore, the Electric region in this region is zero.

E = 0.

<u>At r < c:</u>

The imaginary surface is drawn outside of the metal sphere. In this case, the enclosed charge is +Q (The metal (+2Q) plus the smaller ball (-Q)).

E4\pi r^2 = \frac{Q}{\epsilon_0}\\E = \frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}

<u>At r = c:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{c^2}

3 0
3 years ago
if you jump from a window that is 2 meters up you will most likely break the bones in your legs when you land however on a tramp
Gemiola [76]
<span>The de-acceleration or negative acceleration of stopping is what damages bones. The ground is rigid and therefore the change in momentum when striking the ground will be large. On the trampoline, the elasticity of the material means that the momentum changes more slowly, resulting in smaller accelerations.</span>
5 0
3 years ago
On a clear day at a certain location, a 119-V/m vertical electric field exists near the Earth's surface. At the same place, the
IrinaVladis [17]

Answer:

(a) 62.69 nJ/m^3

(b) 1015.22 μJ/m^3

Explanation:

Electric field, E = 119 V/m

Magnetic field, B = 5.050 x 10^-5 T

(a) Energy density of electric field = \frac{1}{2}\varepsilon _{0}E^{2}

          =\frac{1}{2}\times 8.854\times 10^{-12}\times 119\times 119

          = 6.269 x 10^-8 J/m^3 = 62.69 nJ/m^3

(b) energy density of magnetic field = \frac{B^{2}}{2\mu _{0}}

=\frac{\left ( 5.05\times 10^{-5} \right )^{2}}{2\times 4\times 3.14\times 10^{-7}}

= 1.01522 x 10^-3 J/m^3 = 1015.22 μJ/m^3

8 0
3 years ago
According to the law of reflection, the angle of incidence is equal to the angle of
Darina [25.2K]

Before going to answer this question first we have to understand reflection and laws of reflection.

Reflection is the optical phenomenon in which light will bounce back to the same medium from which it had originated .

Whenever a light ray will incident on a mirror or any reflecting surface, it will be reflected. The ray which falls on the reflecting surface is called incident ray and the ray which is reflected is called reflected ray.

Let us consider a normal to the point of incidence.The angle made by incident ray with the normal is called angle of incidence.Let it be denoted as[ i ]

The angle made by the reflected ray with the normal is called angle of incidence.Let it be denoted as [r]

There are two types of reflection.One is called regular and other one is called as irregular.The laws of reflection is valid for both the types of reflection.

There are two laws of reflection.

FIRST LAW -It states that the incident ray,reflected ray and the normal to the point of incidence,all lie in one plane.

SECOND LAW- It states that that the angle of incidence is equal to the angle of reflection irrespective of the type of reflection.i.e i =r

Hence the correct answer will be angle of reflection.

                                         

3 0
3 years ago
Read 2 more answers
Other questions:
  • Scientists can measure the amounts of different elements found in the universe. Which element's concentration in the universe is
    5·1 answer
  • Given that the distance from the left end of the string to the first antinode is 27.5 cm , calculate the wavelength of the stand
    7·1 answer
  • Covalent bonds are characterized by...
    7·2 answers
  • Which of the following distances is the longest?a. 0.006 kilometers
    5·1 answer
  • This chart shows characteristics of three different waves all with the same wavelength of 10 m but moving at different frequenci
    12·1 answer
  • O ln a hydraulic press , a force Of 400 N is exerted on
    8·1 answer
  • What is the kinetic energy of a 2.7kg book
    7·1 answer
  • Helppp pls yes or no question
    11·2 answers
  • If a skydiver jumps out of a plane horizontally (in other words with no initial vertical velocity), then what will her vertical
    8·1 answer
  • Which image shows the correct way of lining up vectors to add them
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!