Answer:
y = 67.6 feet, y = 114.4/ (22 - 3t)
Explanation:
For this exercise let's use that light travels in a straight line and some trigonometric relationships, the symbols are in the attached diagram
Large triangle Projector up to the screen
tan θ = y / L
For the small triangle. Projector up to the person
tan θ = y₀ / (L-d)
The angle is the same, so we equate the two equations
y₀ / (L -d) = y / L
y = y₀ L / (L-d)
The distance from the screen (d), we look for it with kinematics
v = d / t
d = v t
we replace
y = y₀ L / (L - v t)
y = 5.2 22 / (22 - 3 t)
y = 114.4 (22 - 3t)⁻¹
This is the equation of the shadow height change as a function of time
For the suggested distance the shadow has a height of
y = 114.4 / (22-13)
y = 67.6 feet
Answer:
a. 
b. 
c. 
Explanation:
First, look at the picture to understand the problem before to solve it.
a. d1 = 1.1 mm
Here, the point is located inside the cilinder, just between the wire and the inner layer of the conductor. Therefore, we only consider the wire's current to calculate the magnetic field as follows:
To solve the equations we have to convert all units to those of the international system. (mm→m)

μ0 is the constant of proportionality
μ0=4πX10^-7 N*s2/c^2
b. d2=3.6 mm
Here, the point is located in the surface of the cilinder. Therefore, we have to consider the current density of the conductor to calculate the magnetic field as follows:
J: current density
c: outer radius
b: inner radius
The cilinder's current is negative, as it goes on opposite direction than the wire's current.




c. d3=7.4 mm
Here, the point is located out of the cilinder. Therefore, we have to consider both, the conductor's current and the wire's current as follows:

As we see, the magnitud of the magnetic field is greater inside the conductor, because of the density of current and the material's nature.
Answer:
The time taken to stop the box equals 1.33 seconds.
Explanation:
Since frictional force always acts opposite to the motion of the box we can find the acceleration that the force produces using newton's second law of motion as shown below:

Given mass of box = 5.0 kg
Frictional force = 30 N
thus

Now to find the time that the box requires to stop can be calculated by first equation of kinematics
The box will stop when it's final velocity becomes zero

Here acceleration is taken as negative since it opposes the motion of the box since frictional force always opposes motion.