Every object has thermal energy (better word than heat, since we associate that with high temperatures). This is actually the molecules vibrating, moving a lot. More thermal energy means more vibrating, and thus also expanding in volume.
As the roller coaster speeds up on the way down the hill, the potential energy of roller coaster will be converted to kinetic energy.
<h3>
What is Conservation of Energy ?</h3>
Conservation of energy state that energy is neither created nor destroy, they can only be transformed from one form to another. Energy of and object can transform from Potential energy to kinetic energy and vice versa
Given that at the top of a hill a roller coaster has gravitational potential energy due to its position. What will happen to this potential energy as the roller coaster speeds up on the way down the hill is that the potential energy to the roller coaster will start decreasing while the kinetic energy will start to increase.
The total energy of the roller coaster will be constant because of conservation of energy. As the roller coaster speeds up on the way down the hill, the potential energy will eventually reduce to zero where the total energy of the as the roller coaster will be equal to maximum kinetic energy.
Therefore, as the roller coaster speeds up on the way down the hill, the potential energy of roller coaster will be converted to kinetic energy.
Learn more about Energy here: brainly.com/question/25959744
#SPJ1
Answer:
31.321 rad/s
Explanation:
L = Tube length
A = Area of tube
= Density of fluid
v = Fluid velocity
m = Mass = 
Centripetal force is given by

Pressure is given by

The angular speed of the tube is 31.321 rad/s
Answer:
Explained
Explanation:
Resistance R in a current flow through an object is given by

ρ = resistivity of the material
L= length of the object
A= area of cross section
clearly resistance is directly dependent on length of the object.This means greater the length larger will be resistance to current.
thermal resistance R_th is given by

L= length of the object
A= area of cross section
K = Conductivity of the material
thermal resistance is also is directly dependent on length of the object.This means greater the length larger will be resistance to current.