1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
frutty [35]
4 years ago
5

A box with a mass of 12.5 kg sits on the floor. how high would you need to lift it for it to have a gpe of 355 j

Physics
1 answer:
grandymaker [24]4 years ago
3 0
Gpe=mgh

355=12.5×10×h
h=355/125= 2.84m
You might be interested in
Which of the following is not an example of a molecule? A.H2O2 B.NCl3 C.F D.O3
lara [203]
I believe the answer is F. This is because, F stands for Fluorine, which is an element and consists of one atom. A molecule consists of TWO OR MORE atoms held together by chemical bonds. F consists of only one atom, which is Fluorine. So the answer is C. Hope helped.
7 0
3 years ago
Read 2 more answers
Circular motion formulas
KIM [24]

Answer:

I found this don't know if its any use or not

5 0
3 years ago
Calculate the electric field at the center of a square
pantera1 [17]

Answer:

E_y=1175510.2\ N.C^{-1}

The Magnitude of electric field is in the upward direction as shown directly towards the charge q_1.

Explanation:

Given:

  • side of a square, a=52.5\ cm
  • charge on one corner of the square, q_1=+45\times 10^{-6}\ C
  • charge on the remaining 3 corners of the square,q_2=q_3=q_4=-27\times 10^{-6}\ C

<u>Distance of the center from each corners</u>=\frac{1}{2} \times diagonals

diagonal=\sqrt{52.5^2+52.5^2}

diagonal=74.25\cm=0.7425\ m

∴Distance of center from corners, b=0.3712\ m

Now, electric field due to charges is given as:

E=\frac{1}{4\pi\epsilon_0}\times \frac{q}{b^2}

<u>For charge q_1 we have the field lines emerging out of the charge since it is positively charged:</u>

E_1=9\times 10^9\times \frac{45\times 10^{-6}}{0.3712^2}

  • E_1=2938775.5\ N.C^{-1}

<u>Force by each of the charges at the remaining corners:</u>

E_2=E_3=E_4=9\times 10^9\times \frac{27\times 10^{-6}}{0.3712^2}

  • E_2=E_3=E_4=1763265.3\ N.C^{-1}

<u> Now, net electric field in the vertical direction:</u>

E_y=E_1-E_4

E_y=1175510.2\ N.C^{-1}

<u>Now, net electric field in the horizontal direction:</u>

E_y=E_2-E_3

E_y=0\ N.C^{-1}

So the Magnitude of electric field is in the upward direction as shown directly towards the charge q_1.

8 0
3 years ago
2. A hanging wind-chime on a calm day would have kinetic or potential energy?
rjkz [21]

Answer:

it would have potential energy

7 0
3 years ago
HELP PLEASE!!! 30+ points!!
GarryVolchara [31]

1) 9.26 cm

Explanation:

The focal length of a plane mirror is virtually infinite. Considering the lens equation,

\frac{1}{f}=\frac{1}{p}+\frac{1}{q}

where f is the focal length, p is the object distance, q the image distance. If we replace f with infinity, we get

q=-p

The magnification equation states that

y' = -\frac{q}{p}y

where y is the size of the object and y' the size of the image. Substituting q=-p, we get

y'=y

this means that the image produced by a plane mirror is always:

- Upright (y' is positive)

- The same size as the object

In this case, we have a book of height 9.26 cm (y=9.26 cm). This means that the magnitude of the size of the image (y') will be 9.26 cm as well.

2) 22.7 cm

As we said before, due to the infinite focal length of a plane mirror,

q=-p

this means that the image produced by a plane mirror is always:

- Virtual (because q is negative)

- At the same distance from the mirror as the object

In this case, we have a book placed at 22.7 cm from the mirror (p=22.7 cm). This means that the magnitude of the distance of the image from the mirror (q) will be 22.7 cm as well.

3) 1.60 m/s

We said previously that the image produced by a plane mirror is always at the same distance from the mirror as the real object. This implies that whenever we move the object toward/away from the mirror, the distance p will alway remain equal to the distance q. But this also means that the object and the distance are moving toward/away from the mirror at the same speed.

Therefore, since in this case the person is moving away from the mirror at 1.60 m/s, the image will also move away at a speed of 1.60 m/s.

4 0
3 years ago
Other questions:
  • A man with a weight of 550 N climbs a ladder to a height of 3.5m. How much work did he do?
    6·1 answer
  • A 5cm tall object is placed 4cm in front of a converging lens that has a focal length of 8cm. Where is the image located in ____
    13·1 answer
  • How much power is necessary to do 50 J of work in 5 seconds
    13·2 answers
  • A 72.9 kg man stands on a spring scale in an elevator. Starting from rest, the elevator ascends, attaining its maximum speed of
    10·1 answer
  • A 3.0kg mass tied to a string
    12·1 answer
  • You only need to burn 20% of the calories you consume daily<br><br><br>true or false​
    6·1 answer
  • A weight lifter is trying to do a bicep curl with a weight of 300 N. At the "sticking point", the moment arm of this weight is 3
    12·1 answer
  • What is the name of the device that measures wind speed?
    14·2 answers
  • Magnetic and electric fields lab report guide
    5·2 answers
  • Mercury is the closest planet to the sun, but its mean temperature is only 67°C. why is this?​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!