<span>4.9 L would be the answer to this question :)</span>
C
He needs an battery to make the simple electromagnet
Answer:
0.0164 g
Explanation:
Let's consider the reduction of silver (I) to silver that occurs in the cathode during the electroplating.
Ag⁺(aq) + 1 e⁻ → Ag(s)
We can establish the following relations.
- 1 A = 1 C/s
- The charge of 1 mole of electrons is 96,468 C (Faraday's constant)
- 1 mole of Ag(s) is deposited when 1 mole of electrons circulate.
- The molar mass of silver is 107.87 g/mol
The mass of silver deposited when a current of 0.770 A circulates during 19.0 seconds is:

Answer:
Ca
2+
<K + <Ar<Cl − <S 2−
Explanation:
Ar,K +
,Cl −
,S 2−
,Ca 2+
have the same number of electrons. Their radii would be different because of their different nuclear charges. The cation with the greater positive charge will have a smaller radius because of the greater attraction of the electrons to the nucleus. Anion with the greater negative charge will have the larger radius. In this case, the net repulsion of the electrons will outweigh the nuclear charge and the ion will expand in size. Hence the correct order will be Ca
2+ <K + <Ar<Cl − <S 2−
Answer:
<u>s</u><u>u</u><u>g</u><u>a</u><u>r</u> is the solute and <u>w</u><u>a</u><u>t</u><u>e</u><u>r</u> is the solvent