You can put a known amount sodium into some sort of time release mechanism such as a pill made from soluble material. Then you can place the sodium into a calorimeter with a known mass of water and record the temperature change the water undergoes during the reaction. Then you can use the equation q(water)=m(water)c(water)ΔT to find the amount of heat absorbed by the water. since the amount of heat absorbed by the water is the amount of heat released from the sodium, q(sodium)=-q(water). Than you can use the equation q(sodium)=m(sodium)c(sodium)ΔT and solve for c(sodium)
I hope this helps and feel free to ask about anything that was unclear in the comments.
Answer:
oxidation number is correct!! :)
Explanation:
Well, these particles happens to be small, like REALLY small. So microscopically small they aren't picked up or observed my the naked eye. also the vibrations are in an atomic scale which is also VERY tiny This goes for all solids too.
Your answer is B, conservation of mass
Recall that percent yield is given by: %Yeild = actual yeild/theoretical yeild x100
During experiments, there are errors made:
• uncertainty in measurements
• losses of reactants and products
• impurity in reactants
• losses during separation (e.g. filtration or purification)
• Some side reactions might also happen.
Among the given options, only conservation of mass does not contribute to a lower actual yield compared to the theoretical yield.
Answer: Concentration of the chemist's sodium chloride solution is 34.4 mol/L.
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per Liter of the solution.

where,
n= moles of solute
= volume of solution in ml
Given : moles of
= 6.89
volume of solution = 200 ml
Putting in the values we get:

Thus the concentration of the chemist's sodium chloride solution is 34.4 mol/L.