First we have to find Ka1 and Ka2
pKa1 = - log Ka1 so Ka1 = 0.059
pKa2 = - log Ka2 so Ka2 = 6.46 x 10⁻⁵
Looking at the values of equilibrium constants we can see that the first one is really big compared to second one. so, the pH will be affected mainly by the first ionization of the acid.
Oxalic acid is H₂C₂O₄
H₂C₂O₄ ⇄ H⁺ + HC₂O₄⁻
0.0356 M 0 0
0.0356 - x x x
Ka1 =
![\frac{[H^+][HC2O4^-]}{[H2C2O4]}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5BH%5E%2B%5D%5BHC2O4%5E-%5D%7D%7B%5BH2C2O4%5D%7D%20)
= x² / 0.0356 - x
x = 0.025 M
pH = - log [H⁺] = - log (0.025) = 1.6
Hello!
To solve this problem, we will use the
Boyle's Law, which describes how pressure changes when volume changes and vice-versa. The equation for this law is the following one, and we'll clear for V2:

So, the final volume after increasing the pressure would be
2,7 L. That means that volume decreases when the pressure increases
Have a nice day!
In this case, among the list of components given, the abiotic factors are water, rock, soil, and sun.
<h3>What is an abiotic factor?</h3>
An abiotic factor is a non-living part of an ecosystem that shapes its environment.
Biotic and abiotic factors make up a community via interaction.
Biotic factors are considered living things (having "life") while abiotic factors are simply non-living things.
Hence, in this case, among the list of components given, the abiotic factors are water, rock, soil, sun
Learn more about the abiotic factor here:
brainly.com/question/10111151
#SPJ1
Answer:
it's describes the velocity. since a direction was specifically given, that means it is displacement, and displacement is to velocity while distance is to speed