The acceleration of a rocket engine is given here, and after 50 seconds of flight, the engine fails, and we must determine the altitude of the rocket at the time the engine fails. Because the rocket starts from rest, the time taken is 50 seconds, the initial velocity is zero, and the acceleration is 22.9 meters per second square. So we use the kinamatics equation s equal to v. I t plus half 8 square. There is no acceleration at the start. 22.9 and t is 50 seconds, so displacement 2.86 times 10 to the power 4 is met. This is the rocket's displacement in 50 seconds, so this is the rocket's altitude when the engine fails.
<h3>What exactly is accelerate?</h3>
- In mechanics, acceleration is defined as the rate of change of an object's velocity with respect to time. Vector quantities are accelerations. The orientation of an object's acceleration is determined by the orientation of its net force.
- In his second law of motion, Sir Isaac Newton (1642-1727) defined acceleration as the ratio of a force acting on an object to its mass: a = f/m.
- Accelerate is a verb that means to speed up. When you press the gas pedal, the car accelerates. If you know someone who works at the consulate, you can speed up the process.
- Acceleration is the rate at which velocity changes over time, both in terms of speed and direction. A point or object moving in a straight line is accelerated if it accelerates or decelerates.
- Even if the speed is constant, motion on a circle is accelerated because the direction is constantly changing. Both effects contribute to acceleration in all other types of motion.
Hence, There is no acceleration at the start. 22. This is the rocket's displacement in 50 seconds, so this is the rocket's altitude when the engine fails.
To know more about Accelerate refer to:
brainly.com/question/460763
#SPJ4
the friction if sliding is greater than rolling
(a)
consider the motion of the tennis ball. lets assume the velocity of the tennis ball going towards the racket as positive and velocity of tennis ball going away from the racket as negative.
m = mass of the tennis ball = 60 g = 0.060 kg
v₀ = initial velocity of the tennis ball before being hit by racket = 20 m/s
v = final velocity of the tennis ball after being hit by racket = - 39 m/s
ΔP = change in momentum of the ball
change in momentum of the ball is given as
ΔP = m (v - v₀)
inserting the above values
ΔP = (0.060) (- 39 - 20)
ΔP = - 3.54 kgm/s
hence , magnitude of change in momentum : 3.54 kgm/s
Answer:
this may be wrong but when i looked it up it said “Seafloor Mapper”
Explanation:
I think the correct answer from the choices listed above is the first option. The statement that best accounts for these different opinions would be that <span>scientists propose contradictory ideas to include all possibilities. Hope this answers the question. Have a nice day.</span>