Answer:
Δ KE = 249158.6 kJ
Explanation:
given data
Truck mass M = 1560 Kg
Truck initial speed, u = 28 m/s
mass of car m = 1070 Kg
initial speed of car u1 = 0 m/s
solution
first we get here final speed by using conservation of momentum that is express as
Mu = (M+m) V .......................1
put here value we get
1560 × 28 = (1560 + 1070 ) V
solve it we get
final speed V = 16.60 m/s
and
Change in kinetic energy will be here
Δ KE =
.................2
put here value and we get
Δ KE =
solve it we get
Δ KE = 249158.6 kJ
When you are on a huge water slide, the force present as you slide is the gravitational force. It is because the gravity enables you to slide down the water slide. The net force is the overall forces of the object, so as you slide the water slide, you may experience the net force once you slide down with the gravity and water sliding you down.
a. We can calculate the amount of work by calculating the area under the graph.
first area (rectangular): 2.5 x 6 = 15
second area(trapezoid): 1/2 x (6+10) x 2.5 =20
total work done: 35 J
b. the force was first applied = 6 N
F = m.a
a = 6 : 3 = 2 m/s²
vf²=vi²+2as
vf²=6²+2.2.5
vf²=56
vf=7.5 m/s
Answer:
the light waves bend or REFRACT
Explanation:
Answer:
bounce up and down
Explanation:
Buoys are used for two main reasons, one is to let the people on land know of a big incoming wave, while the second reason is to generate electricity. When a big wave is approaching the buoy starts to bounce up and down with the strength of the smalled previous waves and then bounce very strongly up as the bigger wave passes by. This movement is combined with pistons within the buoy in order to conduct electricity.