Answer:
The new partial pressures after equilibrium is reestablished:



Explanation:

At equilibrium before adding chlorine gas:
Partial pressure of the 
Partial pressure of the 
Partial pressure of the 
The expression of an equilibrium constant is given by :


At equilibrium after adding chlorine gas:
Partial pressure of the 
Partial pressure of the 
Partial pressure of the 
Total pressure of the system = P = 263.0 Torr




At initail
(13.2) Torr (32.8) Torr (13.2) Torr
At equilbriumm
(13.2-x) Torr (32.8-x) Torr (217.0+x) Torr


Solving for x;
x = 6.402 Torr
The new partial pressures after equilibrium is reestablished:



Answer:
Mass = 42.8g
Explanation:
4 NH 3 ( g ) + 5 O 2 ( g ) ⟶ 4 NO ( g ) + 6 H 2 O ( g )
Observe that every 4 mole of ammonia requires 5 moles of oxygen to obtain 4 moles of Nitrogen oxide and 6 moles of water.
Step 1: Determine the balanced chemical equation for the chemical reaction.
The balanced chemical equation is already given.
Step 2: Convert all given information into moles (through the use of molar mass as a conversion factor).
Ammonia = 63.4g × 1mol / 17.031 g = 3.7226mol
Oxygen = 63.4g × 1mol / 32g = 1.9813mol
Step 3: Calculate the mole ratio from the given information. Compare the calculated ratio to the actual ratio.
If all of the 1.9831 moles of oxygen were to be used up, there would need to be 1.9831 × 4 / 5 or 1.5865 moles of Ammonia. We have 3.72226 moles of ammonia - Far excess. Because there is an excess of Ammonia, the Oxygen amount is used to calculate the amount of the products in the reaction.
Step 4: Use the amount of limiting reactant to calculate the amount of H2O produced.
5 moles of O2 = 6 moles of H2O
1.9831 moles = x
x = (1.9831 * 6 ) / 5
x = 2.37972 moles
Mass of H2O = Molar mass * Molar mass
Mass = 2.7972 * 18
Mass = 42.8g
Answer: Cellular respiration is spontaneous and exergonic. The energy released from the glucose is stored in ATP molelcules.
Explanation:
Spontaneous reactions have an increase in entropy (level of disorder) and a decrease in enthalpy (total energy). Cellular respiration goes from a more ordered state (one molecule of glucose) to a more disordered state (several molecules of CO2), and goes from a state with a lot of free energy to one with much less free energy. As a result, respiration is a spontaneous process.
As free energy from the glucose is released as ATP molecules during oxidation, the reaction is exergonic.
Answer:
carbon
Explanation:
because it is an allotrope of carbon
Answer:
C. BF3
Explanation:
The boron in BF3 is electron poor and has an empty orbital, so it can accept a pair of electrons, making it a Lewis acid.