*☆*――*☆*――*☆*――*☆*――*☆*――*☆*――*☆*――*☆**☆*――*☆*――*☆*――*☆
Answer: Something that's vibrating, and you also need medium for those vibrations to start in.
I hope this helped!
<!> Brainliest is appreciated! <!>
- Zack Slocum
*☆*――*☆*――*☆*――*☆*――*☆*――*☆*――*☆*――*☆**☆*――*☆*――*☆*――*☆
 
        
             
        
        
        
A. To find work we need to know F and S; to find power we need to know F and V
        
             
        
        
        
Answer:
μ = 0.692
Explanation:
In order to solve this problem, we must make a free body diagram and include the respective forces acting on the body. Similarly, deduce the respective equations according to the conditions of the problem and the directions of the forces.
Attached is an image with the respective forces:
A summation of forces on the Y-axis is performed equal to zero, in order to determine the normal force N. this summation is equal to zero since there is no movement on the Y-axis.
Since the body moves at a constant speed, there is no acceleration so the sum of forces on the X-axis must be equal to zero.
The frictional force is defined as the product of the coefficient of friction by the normal force. In this way, we can calculate the coefficient of friction.
The process of solving this problem can be seen in the attached image.
 
        
             
        
        
        
Answer:
f = 8 %
Explanation:
given,
density of body of fish = 1080 kg/m³
density of air = 1.2 Kg/m³
density of water = 1000 kg/m²
to protect the fish from sinking volume should increased by the factor f
density of fish + density of water x increase factor = volume changes in water                                                    
1080 +f x 1.2 =(1 + f ) x 1000                
1080 + f x 1.2 = 1000 + 1000 f      
998.8 f = 80                                   
f = 0.0800                             
f = 8 %                                         
the volume increase factor of fish will be equal to f = 8 %
 
        
             
        
        
        
Newton's second law states that Fnet = ma, where Fnet is the net force applied, m is the mass of the object, and a is the object's acceleration. You have the values for Fnet and a, so you simply use this equation to solve for m, mass.