This question requires the knowledge of density.
The density of ethyl alcohol = 789 kg m⁻³
The density of water = 1000 kg m⁻³
Density = Mass / Volume
By applying ethyl alcohol,
789 kg m⁻³ = Mass / 0.9 m³
Mass = 710.1 kg
hence the mass of 0.9 m³ ethyl alcohol is 710.1 kg.
Then by applying water,
1000 kg m⁻³ = 710.1 kg / Volume
Volume = 0.7101 m³
= 0.7 m³
hence the equal water volume is 0.7 m³
Answer: The answer is the second choice.
Explanation:
B- Predict the damages due to an earthquake
Answer:
7.5 moles of CaBr2 are produced
Explanation:
Based on the equation:
2AlBr3 + 3CaO → Al2O3 + 3CaBr2
<em>2 moles of AlBr3 produce 3 moles of CaBr2 if CaO is in excess.</em>
<em />
Using this ratio: 2 moles AlBr3 / 3 moles CaBr2. 5 moles of AlBr3 produce:
5 moles AlBr3 * (3 moles CaBr2 / 2 moles AlBr3) =
<h3>7.5 moles of CaBr2 are produced</h3>
<em />
Answer:
V₂ = 285 mL
Explanation:
Given data:
Initial volume of bag = 250 mL
Initial temperature = 19.0°C
Final temperature = 60.0°C
Final volume = ?
Solution:
The given problem will be solved by using Charles Law,
This law stated that " The volume of given amount of gas at constant pressure and constant number of moles is directly proportional to its temperature"
Mathematical relationship:
V₁/T₁ = V₂/T₂
Now we will convert the temperature into kelvin.
Initial temperature = 19.0 + 273 = 292K
Final temperature = 60.0 + 273 = 333K
Now we will put the values in formula:
V₁/T₁ = V₂/T₂
250 mL / 292K = V₂/ 333K
0.856 mL /K = V₂/ 333K
V₂ = 0.86×333K. mL /K
V₂ = 285 mL