Answer:
Differences between Orbit and Orbitals
Orbit
An orbit is the simple planar representation of an electron.
It can be simply defined as the path that gets established in a circular motion by revolving the electron around the nucleus
The shape of molecules cannot be explained by an orbit as they are non-directional by nature.
An orbit that is well-defined goes against the Heisenberg principle.
Orbital
An orbital refers to the dimensional motion of an electron around the nucleus in a three-dimensional motion.
An orbital can simply be defined as the space or the region where the electron is likely to be found the most.
The shapes of the molecules can be found out as they are directional by nature.
An ideal orbital agrees with the theory of Heisenberg’s Principles.
In resonance structures, the chemical connectivity in the molecule is same but the distribution of electrons are different around the structure. They are created by moving electrons in double or triple bonds, and not atoms.
Phenol,
and methanol,
both are alcohols that contain an
group attached to carbon atom.
Due to loss of 1
from phenol, it forms phenoxide anion and due to presence of double bond in the benzene ring the negative charge on the oxygen atom (which represents electrons) will resonate with double bonds of benzene ring as shown in the image. The resonance-stabilized phenoxide ion is more stable. Whereas when methanol lose 1
it forms methoxide anion and there are no such electrons present in the structure of methoxide that will result in the movement of electron. Since, due to resonance-stabilized phenoxide ion is more stable than methoxide ion, so it is a stronger acid.
The structures of the anions resulting from loss of 1
from phenol and methanol is shown in the image.
Answer:
Mass = 57.05 g
Explanation:
Given data:
Volume of SO₂ = 20.0 L
Temperature = standard = 273 K
Pressure = standard = 1 atm
Mass of SO₂ = ?
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
n = PV/RT
n = 1 atm × 20.0 L / 0.0821 atm.L/ mol.K× 273 k
n = 20.0 / 22.41/mol
n = 0.89 mol
Mass of SO₂:
Mass = number of moles × molar mass
Mass = 0.89 mol × 64.1 g/mol
Mass = 57.05 g
Answer:
2Fe(s) + 3Cl2(g) → 2FeCl3(s)
Explanation:
Step 1: Data given
iron = Fe = solid = Fe(s)
chlorine = Cl2 = gas = Cl2(g)
iron(III) chloride = FeCl3 = solid = FeCl3(s)
Step 2: The unbalanced equation
Fe(s) + Cl2(g) → FeCl3(s)
Step 3: Balancing the equation
Fe(s) + Cl2(g) → FeCl3(s)
On the left we have 2x Cl (in Cl2) and on the right side we have 3x Cl (in FeCl3). To balance the amount of Cl we have to multiply Cl2 (on the left) by 3 and FeCl3 by 2.
Fe(s) + 3Cl2(g) → 2FeCl3(s)
On the left side we have 1x Fe and on the right side we have 2x Fe (in 2FeCl3). To balance the amount of Fe, we have to multiply Fe on the left side by 2. Now the equation is balanced.
2Fe(s) + 3Cl2(g) → 2FeCl3(s)