A C and D are all correct, Helium and Hydrogen only have a 1s orbital, and helium has 2 protons, while hydrogen has 1, and finally Hydrogen has no neutrons while helium has 2. Helium does not however have 8 valence electrons as the 1s orbital can only hold 2, meaning B is the “correct” (false) answer.
Explanation:
Molar mass
The mass present in one mole of a specific species .
The molar mass of a compound , can easily be calculated as the sum of the all the individual atom multiplied by the number of total atoms .
(a) P₄
Molar mass of of the atoms are -
Phosphorous , P = 31 g/mol
Molecular mass of P₄ = ( 4 * 31 ) = 124 g/mol .
(b) H₂O
Molar mass of of the atoms are -
Hydrogen , H = 1 g/mol
oxygen , O = 16 g/mol.
Molecular mass of H₂O = ( 2 * 1 ) + ( 1 * 16 ) = 18 g/mol
(c) Ca(NO₃)₂
Molar mass of of the atoms are -
calcium , Ca = 40 g/mol
nitrogen, N = 14 g/mol
oxygen , O = 16 g/mol.
Molecular mass of Ca(NO₃)₂ = ( 1 * 40 ) + ( 2 * 14 ) + ( 6 * 16 ) = 164 g/mol.
(d)CH₃CO₂H (acetic acid)
Molar mass of of the atoms are -
Carbon , C = 12 g/mol.
oxygen , O = 16 g/mol.
Hydrogen , H = 1 g/mol
Molecular mass of CH₃CO₂H =( 2 * 12 ) + (2 * 16 ) + (4 * 1 ) = 60 g/mol.
(e) C₁₂H₂₂O₁₁ (sucrose, cane sugar).
Molar mass of of the atoms are -
Carbon , C = 12 g/mol.
oxygen , O = 16 g/mol.
Hydrogen , H = 1 g/mol
Molecular mass of C₁₂H₂₂O₁₁ = (12 * 12 ) + ( 22 * 1 ) + ( 11 * 16 ) = 342 g/mol.
The average kinetic energy and rms speed of N₂ molecules at STP is
and 
Given,

The average kinetic energy of a molecule is given by,
where k is the Boltzmann constant and Tis the absolute temperature of the gas.


The rms speed of
molecules is given by

The average kinetic energy of a gas's particles is inversely related to its temperature. As the gas warms, the particles must travel more quickly since their mass is constant.
The average kinetic energy (K) is equal to one half of the mass (m) of each gas molecule times the RMS speed (vrms) squared.
Learn more about average kinetic energy brainly.com/question/1599923
#SPJ4
The answer is 0 if im right