1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
-Dominant- [34]
3 years ago
11

Calculate the temperature of the air mass when it has risen to a level at which atmospheric pressure is only 8.00×104 Pa . Assum

e that air is an ideal gas, with γ=1.40. (This rate of cooling for dry, rising air, corresponding to roughly 1 ∘C per 100 m of altitude, is called the dry adiabatic lapse rate.)
Physics
1 answer:
cestrela7 [59]3 years ago
6 0

Answer:

T_{2}=278.80 K

Explanation:

Let's use the equation that relate the temperatures and volumes of an adiabatic process in a ideal gas.

(\frac{V_{1}}{V_{2}})^{\gamma -1} = \frac{T_{2}}{T_{1}}.

Now, let's use the ideal gas equation to the initial and the final state:

\frac{p_{1} V_{1}}{T_{1}} = \frac{p_{2} V_{2}}{T_{2}}

Let's recall that the term nR is a constant. That is why we can match these equations.  

We can find a relation between the volumes of the initial and the final state.

\frac{V_{1}}{V_{2}}=\frac{T_{1}p_{2}}{T_{2}p_{1}}

Combining this equation with the first equation we have:

(\frac{T_{1}p_{2}}{T_{2}p_{1}})^{\gamma -1} = \frac{T_{2}}{T_{1}}

(\frac{p_{2}}{p_{1}})^{\gamma -1} = \frac{T_{2}^{\gamma}}{T_{1}^{\gamma}}

Now, we just need to solve this equation for T₂.

T_{1}\cdot (\frac{p_{2}}{p_{1}})^{\frac{\gamma - 1}{\gamma}} = T_{2}

Let's assume the initial temperature and pressure as 25 °C = 298 K and 1 atm = 1.01 * 10⁵ Pa, in a normal conditions.

Here,

p_{2}=8.00\cdot 10^{4} Pa \\p_{1}=1.01\cdot 10^{5} Pa\\ T_{1}=298 K\\ \gamma=1.40

Finally, T2 will be:

T_{2}=278.80 K

You might be interested in
For this problem, imagine that you are on a ship that is oscillating up and down on a rough sea. Assume for simplicity that this
ikadub [295]

Answer:

no idea

Explanation:

7 0
3 years ago
Some strongly electric fish will stun prey by generating an electric current that runs
Bezzdna [24]

Answer: when fish is stunning it's prey it's cause electric shock to the prey that's make it die and be able to be utilized by electric eel(fish generate electric surround)

4 0
3 years ago
In the figure below the pulley is a solid disk of mass M and radius R with rotational inertia MR 2/2. Two blocks one of mass m a
matrenka [14]
Assuming you are looking for the acceleration a:

1.m_1a = T_1 -m_1g
2.m_2a = m_2g - T_2
where T is the tension and a is the acceleration of the blocks. The acceleration of the two blocks and the acceleration of the pulley must be equal.

The torque on the pulley is given by:
3.\tau = \overrightarrow r \times \overrightarrow F = (T_2 - T_1)R = I\alpha = \frac{1}{2} MR^2 \frac{a}{R}
where I = \frac{1}{2} mR^2 and a = \alpha R.

Combining the three equations:
T_2 - T_1 = \frac{1}{2} Ma \\ m_2g - m_2a -m_1g - m_1a = (m_2-m_1)g - (m_1 + m_2)a = \frac{1}2}Ma \\ \\ a = \frac{(m_2 - m_1)g}{m_1 + m_2 + \frac{1}{2}M }
6 0
3 years ago
A 0.560 kg snowball is fired from a cliff 14.2 m high with an initial velocity of 13.3 m/s, directed 26.0° above the horizontal.
enot [183]

Answer:

a) v = 21.34 m/s

b) v = 21.34 m/s

c) v = 21.34 m/s

Explanation:

Mass of the snowball, m = 0.560 kg

Height of the cliff, h = 14.2 m

Initial velocity of the ball, u = 13.3 m/s

θ = 26°

The speed of the slow ball as it reaches the ground, v = ?

The initial Kinetic energy of the snow ball, KE_{0}  = 0.5 mu^{2}

Potential energy of the snow ball at the given height, PE = mgh

Final Kinetic energy of the ball as it reaches the ground, KE_{f} = 0.5mv^{2}

a) Using the principle of energy conservation,

KE_{0} + PE = KE_{f} \\0.5mu^{2} + mgh = 0.5mv^{2}\\v^{2} =2( 0.5u^{2} + gh)\\v^{2} =u^{2} + 2gh\\v = \sqrt{u^{2} + 2gh} \\v = \sqrt{13.3^{2} + 2*9.8*14.2}\\v = 21.34 m/s

b) The speed remains v = 21.34 m/s since it is not a function of the angle of launch

c)The principle of energy conservation used cancels out the mass of the object, therefore the speed is not dependent on mass

v = 21. 34 m/s

7 0
3 years ago
How much pressure is applied to the ground
statuscvo [17]

Answer:

Pressure applied by the man= 285103.125 Pa  or 41.35 lb/in^{2}

Explanation:

Pressure is defined as the perpendicular force applied per unit area.

i.e.  Pressure=\frac{Force}{Area}

Now, Force= mg

where, m = mass of the body(man) = 93 kg

g = acceleration due to gravity of Earth = 9.81 m/{s^{2}}

Area covered is equal to the area of both stilts(a man generally stands on two feet)

therefore Area=2(0.04)^{2} m^{2}

and putting in the values, we get,

Pressure=\frac{93\times9.81}{2\times(0.04)^{2}}Nm^{-2}=285103.125Nm^{-2}

Now we need to convert to our required units:

1Nm^{-2}=1Pa\\1Pa=0.000145038lb/in^{2}

(We can get the above result by individually converting kg to lb and meters to inches respectively)

Using the above relations we get,

Pressure=285103.125Pa=0.000145038\times285103.125lb/in^{2}=41.35lb/in^{2}

7 0
3 years ago
Other questions:
  • My trip to work is 120 miles. if i go 8 mph faster than my usual speed, i'll get to work 30 minutes earlier. how long does my tr
    5·2 answers
  • A man can swim with a speed of 5m/s in calm water. if this man swims crosses a specific river his speed is 3m/s. if he takes the
    15·1 answer
  • A horse stands 184 cm at the shoulder. The horse is all of the following EXCEPT ____________ tall. A) 1.84 m B) 18.4 dm C) 184,0
    14·1 answer
  • During 4 hours one winter afternoon, when the outside temperature was 11° C, a house heated by electricity was kept at 24° C wit
    14·2 answers
  • Light traveling in water (n = 1.33) into an unknown medium.If rhe angles if incidence and refraction are 40 degrees and 25 degre
    10·1 answer
  • _____reaches the Earth’s surface through ______, then turns into ______.
    5·1 answer
  • Calcalculate potential energy given to a potato sack having a mass of 2 kg as I raise it to a height of 450 CM ​
    6·1 answer
  • A motorcycle has a constant acceleration of 2.5 meters per second squared
    11·1 answer
  • 2. An overseas jet requires 6 hours to fly 9700 km. What is the jet's speed?
    6·1 answer
  • Who gathered the data that showed planets traveling in elliptical paths around the sun? who discovered elliptical orbits? who ex
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!