Answer:
B: False
Explanation:
The second law of thermodynamics states that: the entropy of an isolated system will never decrease because isolated systems always tend to evolve towards thermodynamic equilibrium which is a state with maximum entropy.
Thus, it means that the entropy change will always be positive.
Therefore, the given statement in the question is false.
The refrigerator's coefficient of performance is 6.
The heat extracted from the cold reservoir Q cold (i.e., inside a refrigerator) divided by the work W required to remove the heat is known as the coefficient of performance, or COP, of a refrigerator (i.e., the work done by the compressor). The required inside temperature and the outside temperature have a significant impact on the COP.
As the inside temperature of the refrigerator decreases, its coefficient of performance decreases. The coefficient of performance (COP) of refrigeration is always more than 1.
The heat produced in the cold compartment, H = 780.0 J
Work done in ideal refrigerator, W = 130.0 J
Refrigerator's coefficient of performance = H/W
= 780/130
= 6
Therefore, the refrigerator's coefficient of performance is 6.
Energy conservation requires the exhaust heat to be = 780 + 130
= 910 J
Learn more about coefficient here:
brainly.com/question/18915846
#SPJ4
I think it’s speed will increase, if I understood it correctly
Answer:
h’ = 1/9 h
Explanation:
This exercise must be solved in parts:
* Let's start by finding the speed of sphere B at the lowest point, let's use the concepts of conservation of energy
starting point. Higher
Em₀ = U = m g h
final point. Lower, just before the crash
Em_f = K = ½ m
energy is conserved
Em₀ = Em_f
m g h = ½ m v²
v_b =
* Now let's analyze the collision of the two spheres. We form a system formed by the two spheres, therefore the forces during the collision are internal and the moment is conserved
initial instant. Just before the crash
p₀ = 2m 0 + m v_b
final instant. Right after the crash
p_f = (2m + m) v
the moment is preserved
p₀ = p_f
m v_b = 3m v
v = v_b / 3
v = ⅓ 
* finally we analyze the movement after the crash. Let's use the conservation of energy to the system formed by the two spheres stuck together
Starting point. Lower
Em₀ = K = ½ 3m v²
Final point. Higher
Em_f = U = (3m) g h'
Em₀ = Em_f
½ 3m v² = 3m g h’
we substitute
h’=
h’ =
h’ = 1/9 h
Mass and volume are the 2 factors to determine density