Answer:
The coordinates of the point is (0,0.55).
Explanation:
Given that,
First charge
at origin
Second charge
Second charge at point P = (0,1)
We assume that,
The net electric field between the charges is zero at mid point.
Using formula of electric field







Hence, The coordinates of the point is (0,0.55).
in a hypotonic solution like distilled water, a red blood cell would burst, because inside the cell has a higher solute concentration than outside.
In a hypertonic solution, there is a higher solute concentration on the outside of the cell than on the inside, causing the cell to shrivel.
i hope this helps
Answer:
4334.4 J
Explanation:
Work done equals to kinetic energy change
KE=½mv²
Change in KE is given by
∆KE=½m(v²-u²)
Where m is mass of water-skier, KE is kinetic energy, ∆KE is the change in kinetic energy, v is final velocity and u is initial velocity.
Substituting 72 kg for m, 12.1 m/s for v and 5.10 m/s for u then
∆KE=½*72(12.1²-5.10²)=4334.4J
Therefore, the work done by the net external force acting on the skier is equal to 4334.4 J
Answer:
a.) 490m
b.) 98m/s
Explanation:
Given that the
Acceleration g = 9.8 m/s^2
Time = 10s
Since the parachutist jumps out of an aeroplane. The parachutist jumped out from rest. Initial velocity U is therefore equal to zero. That is,
U = 0
Distance covered = height H
The height can be calculated by using second equation of motion
H = Ut + 1/2gt^2
Substitute g and t into the formula
H = 1/2 × 9.8 × 10^2
H = 490 m
Therefore, she travels as far as 490 m
b.) Her final velocity can be calculated by using third equation of motion
V^2 = U^2 + 2gH
Substitute g and H into the formula.
Remember that U = 0
V^2 = 2 × 9.8 × 490
V^2 = 9604
V = sqrt (9604)
V = 98 m/s
Therefore, her final velocity is 98 m/s
To solve this problem, we can use the cosine formula for
calculating the length of the displacement:
c^2 = a^2 + b^2 – 2 a b cos θ
where c is the displacement, a = 3.5 km, b = 4.5 km, and θ
is the angle inside the triangle
Since the geeze turned 40° from west to north, so the
angle inside the triangle must be:
θ = 180 – 40 = 140°
c^2 = 3.5^2 + 4.5^2 – 2 (3.5) (4.5) cos 140
c^2 = 56.63
c = 7.53 km
<span>So the magnitude of the displacement is 7.53 km</span>