1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andrew [12]
3 years ago
10

Would you be doing more work going up the stairs twice as fast?

Physics
2 answers:
SSSSS [86.1K]3 years ago
7 0
If you use the stairs at normal speed, you will survive longer, and go up higher.
When going up the stairs twice as fast, you lose energy more quickly, but height would remain the same.
BabaBlast [244]3 years ago
5 0
Yes you would because if you go at a slower rate you don't feel the work that you're doing but if you go fast then you can tell that you put work to it and you can tell but how fast your heart is beating
You might be interested in
Why does changing the shape of an object have no effect on the density?
iren [92.7K]
Because the object is still made of the same material 
Density is not affected by the weight and shape of an object its affected by how concentrated the atoms are in a given volume 
7 0
3 years ago
Help meeeee!!!<br> ⇓⇓⇓⇓⇓
Dafna11 [192]

I believe you are correct, it is B: Diagnostic Services.

Diagnostic services are services like the staff at hospitals and the people who run machines that are related to medical needs.

<em>If this is incorrect, please, don't refrain to tell me.</em>

6 0
3 years ago
Read 2 more answers
The planet Uranus has a radius of 25,360 km and a surface acceleration due to gravity of 9.0 m/s^2 at its poles. Its moon Mirand
AlexFokin [52]

Answer:

8.67791\times 10^{25}\ kg

0.34589\ m/s^2

0.07903\ m/s^2

Explanation:

M = Mass of Uranus

G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²

r = Radius of Uranus = 25360 km

h = Altitude = 104000 km

r_m = Radius of Miranda = 236 km

m = Mass of Miranda = 6.6\times 10^{19}\ kg

Acceleration due to gravity is given by

g=\dfrac{GM}{r^2}\\\Rightarrow M=\dfrac{gr^2}{G}\\\Rightarrow M=\dfrac{9\times 25360000^2}{6.67\times 10^{-11}}\\\Rightarrow M=8.67791\times 10^{25}\ kg

The mass of Uranus is 8.67791\times 10^{25}\ kg

Acceleration is given by

a_m=\dfrac{GM}{(r+h)^2}\\\Rightarrow a_m=\dfrac{6.67\times 10^{-11}\times 8.67791\times 10^{25}}{(25360000+104000000)^2}\\\Rightarrow a_m=0.34589\ m/s^2

Miranda's acceleration due to its orbital motion about Uranus is 0.34589\ m/s^2

On Miranda

g_m=\dfrac{Gm}{r_m^2}\\\Rightarrow g_m=\dfrac{6.67\times 10^{-11}\times 6.6\times 10^{19}}{236000^2}\\\Rightarrow g_m=0.07903\ m/s^2

Acceleration due to Miranda's gravity at the surface of Miranda is 0.07903\ m/s^2

No, both the objects will fall towards Uranus. Also, they are not stationary.

6 0
3 years ago
A uniformly dense solid disk with a mass of 4 kg and a radius of 4 m is free to rotate around an axis that passes through the ce
Dmitry [639]

Answer:

3.44 rad

Explanation:

The rotational kinetic energy change of the disk is given by ΔK = 1/2I(ω² - ω₀²) where I = rotational inertia of solid sphere = MR²/2 where m = mass of solid disk = 4 kg and R = radius of solid disk = 4 m, ω₀ = initial angular speed of disk = 0 rad/s (since it starts from rest) and ω = final angular speed of disk

Since the kinetic energy is increasing at a rate of 21 J/s, the increase in kinetic energy in 3.3 s is  ΔK = 21 J/s × 3.3 s = 69.3 J

So, ΔK = 1/2I(ω² - ω₀²)

Since ω₀ = 0 rad/s

ΔK = 1/2I(ω² - 0)

ΔK = 1/2Iω²

ΔK = 1/2(MR²/2)ω²

ΔK = MR²ω²/4

ω² = (4ΔK/MR²)

ω = √(4ΔK/MR²)

ω = 2√(ΔK/MR²)

Substituting the values of the variables into the equation, we have

ω = 2√(ΔK/MR²)

ω = 2√(69.3 J/( 4 kg × (4 m)²))

ω = 2√(69.3 J/[ 4 kg × 16 m²])

ω = 2√(69.3 J/64 kgm²)

ω = 2√(1.083 J/kgm²)

ω = 2 × 1.041 rad/s

ω = 2.082 rad/s

The angular displacement θ is gotten from

θ = ω₀t + 1/2αt² where ω₀ = initial angular speed = 0 rad/s (since it starts from rest), t = time of rotation = 3.3 s and α = angular acceleration = (ω - ω₀)/t = (2.082 rad/s - 0 rad/s)/3.3 s = 2.082 rad/s ÷ 3.3 s = 0.631 rad/s²

Substituting the values of the variables into the equation, we have

θ = ω₀t + 1/2αt²

θ = 0 rad/s × 3.3 s + 1/2 × 0.631 rad/s² (3.3 s)²

θ = 0 rad + 1/2 × 0.631 rad/s² × 10.89 s²

θ = 1/2 × 6.87159 rad

θ = 3.436 rad

θ ≅ 3.44 rad

6 0
3 years ago
Why is water important in cells?
Makovka662 [10]
Because without water they wouldn't able to remove waste, bring in nutrients or move oxygen around. BTW there is a bout 65% of water in the adult human body.
4 0
3 years ago
Other questions:
  • What kinds of features would you expect to see at the edges of two plates, like these that are moving apart at their boundary?
    6·1 answer
  • Select three different examples of accelerated motion. a body traveling in a straight line and increasing in speed a body travel
    15·1 answer
  • If a simple machine reduces the strength of a force, what must be increased?
    10·1 answer
  • - In Einstein's famous equation E = me?, describing the
    9·1 answer
  • How would you describe the pattern shown in graph a?
    12·2 answers
  • What effect does pollution have on plant growth?
    6·1 answer
  • Erica is working in the lab. She wants to remove the fine dust particles suspended in a sample of oil. Which method is she most
    15·1 answer
  • For which planet is the length of the plants day longer than the planets year
    8·1 answer
  • _______ is the natural science that involves the study of matter and how it moves
    14·2 answers
  • NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. A sled and rider wi
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!