By Newton's second law, the net force on the object is
∑ <em>F</em> = <em>m</em> <em>a</em>
∑ <em>F</em> = (2.00 kg) (8 <em>i</em> + 6 <em>j</em> ) m/s^2 = (16.0 <em>i</em> + 12.0 <em>j</em> ) N
Let <em>f</em> be the unknown force. Then
∑ <em>F</em> = (30.0 <em>i</em> + 16 <em>j</em> ) N + (-12.0 <em>i</em> + 8.0 <em>j</em> ) N + <em>f</em>
=> <em>f</em> = (-2.0 <em>i</em> - 12.0 <em>j</em> ) N
Answer:
If x₁=12 cm then k=1.7985 N/m
If x₂=15 cm then k=1.4388 N/m
Explanation:
Hanging mass= 22 g=0.022 kg
Acceleration due to gravity g=9.81 m/s²
If x₁=displacement= 12 cm=0.12 m
k= spring constant


∴k = 1.7985 N/m
If x₂=15 cm=0.15 m
Force of the hanging mass is same however the spring constant will change

∴k = 1.4388 N/m
As the mass is not changing the spring constant has to change. That means that here there are two spring one with k=1.7985 N/m and the other with k= 1.4388 N/m
They are speed and direction.
The increase in potential energy of his mother if her mass is 56.0 kg will be 6031.97 J.
<h3>What is gravitational potential energy?</h3>
The energy that an item has due to its location in a gravitational field is known as gravitational potential energy.
The potential energy increases by 3773 J
PE₂-PE₁=mg(h₂-h₁)
3773 J = 35.0 × 9.81 × (h₂-h₁)
(h₂-h₁) = 10.98
Case 2 ;
ΔPE =?
ΔPE=mg(h₂-h₁)
ΔPE=56.0 × 9.81 ×10.98
ΔPE=6031.97 J.
Hence, the increase in potential energy of his mother if her mass is 56.0 kg will be 6031.97 J.
To learn more about the gravitational potential energy, refer;
brainly.com/question/3884855#SPJ1
#SPJ1