Answer:
C. She should get the Earth spinning on its axis again.
Explanation:
The Earth experiences day and night because of its spinning on its own axis.
If Kara's science-fiction story doesn't have the Earth spinning on its own axis, then the Earth will not experience day and night and hence Kara should incorporate this idea into his story.
Answer:
P = 7.28 N.s
Explanation:
given,
initial momentum of cue ball in x- direction,P₁ = 9 N.s
momentum of nine ball in x- direction, P₂ = 2 N.s
momentum in perpendicular direction i.e. y - direction,P'₂ = 2 N.s
momentum of the cue after collision = ?
using conservation of momentum
in x- direction
P₁ + p = x + P₂
p is the initial momentum of the nine balls which is equal to zero.
9 + 0 = x + 2
x = 7 N.s
momentum in x-direction.
equating along y-direction
P'₁ + p = y + P'₂
0 + 0 = y + 2
y = -2 N.s
the momentum of the cue ball after collision is equal to resultant of the momentum .


P = 7.28 N.s
the momentum of the cue ball after collision is equal to P = 7.28 N.s
<h3><u>Answer;</u></h3>
A. Skeletal muscles, which are made of fibers, nerves, and blood vessels, contract in order to make the body move.
<h3><u>Explanation</u>;</h3>
- <em><u>Muscular tissues functions in movement and locomotion through its direct connection with the skeletal system. </u></em>
- <em><u>Skeletal muscles are responsible for moving the body. The skeletal muscle contractions pull on tendons, which as attached to bones. When the skeletal muscle contraction causes the muscle to shorten, the bone and thus the body par will move. </u></em>
- <em><u>Skeletal muscles also provide structural support for the entire body. </u></em>
Answer:
v = 3.27 m/s
Explanation:
KE = 1/2 mv^2
695 J = 1/2 (130kg)(v^2)
695 J / (1/2 x 130kg) = v^2
v^2 = square root of 10.69
v = 3.27 m/s
Answer:
Forces between molecules
Explanation:
The tensions between molecules are the characteristic that explains variances in the specific heat capacity of two substances.
This means that a substance's specific heat capacity will increase or be higher the closer its atoms are bound together. As a result, it differs for the different states of matter, such as solid, liquid, and gas.