Answer:
a) t₁ = 4.76 s, t₂ = 85.2 s
b) v = 209 ft/s
Explanation:
Constant acceleration equations:
x = x₀ + v₀ t + ½ at²
v = at + v₀
where x is final position,
x₀ is initial position,
v₀ is initial velocity,
a is acceleration,
and t is time.
When the engine is on and the sled is accelerating:
x₀ = 0 ft
v₀ = 0 ft/s
a = 44 ft/s²
t = t₁
So:
x = 22 t₁²
v = 44 t₁
When the engine is off and the sled is coasting:
x = 18350 ft
x₀ = 22 t₁²
v₀ = 44 t₁
a = 0 ft/s²
t = t₂
So:
18350 = 22 t₁² + (44 t₁) t₂
Given that t₁ + t₂ = 90:
18350 = 22 t₁² + (44 t₁) (90 − t₁)
Now we can solve for t₁:
18350 = 22 t₁² + 3960 t₁ − 44 t₁²
18350 = 3960 t₁ − 22 t₁²
9175 = 1980 t₁ − 11 t₁²
11 t₁² − 1980 t₁ + 9175 = 0
Using quadratic formula:
t₁ = [ 1980 ± √(1980² - 4(11)(9175)) ] / 22
t₁ = 4.76, 175
Since t₁ can't be greater than 90, t₁ = 4.76 s.
Therefore, t₂ = 85.2 s.
And v = 44 t₁ = 209 ft/s.
Answer:
ocean covers 71 percent of the earth
Answer:
Yes, if the system has friction, the final result is affected by the loss of energy.
Explanation:
The result that you are showing is the conservation of mechanical energy between two points in the upper one, the energy is only potential and the lower one is only kinetic.
In the case of some type of friction, the change in energy between the same points is equal to the work of the friction forces
= ΔEm
=
-Em₀
As we can see now there is another quantity and for which the final energy is lower and therefore the final speed would be less than what you found in the case without friction.
=
+ Em₀
Remember that the work of the rubbing force is negative, let's write the work of the rubbing force explicitly, to make it clearer
½ m v² = -fr d + mgh
v = √(-fr d 2/m + 2 gh)
v = √ (2gh - 2fr d/m)
Now it is clear that there is a decrease in the final body speed.
Consequently, if the system has friction, the final result is affected by the loss of energy.
Because other scientists and science in general rely on their collegues' research which in turn allows development of our knowledge on the given subject. The more dont-to-earth reason may be safety. If someone performs an experiment without knowledge of its true results it might result in some danger to the safety of those perforning it without knowledge of all the risks.
The correct answer is: 1792g or 1800g.
(When you round it)