Given:
ρ = 13.6 x 10³ kg/m³, density of mercury
W = 6.0 N, weight of the mercury sample
g = 9.81 m/s², acceleration due to gravity.
Let V = the volume of the sample.
Then
W = ρVg
or
V = W/(ρg)
= (6.0 N)/[(13.6 x 10³ kg/m³)*(9.81 m/s²)]
= 4.4972 x 10⁻⁵ m³
Answer: The volume is 44.972 x 10⁻⁶ m³
<span>gravitational force = 0.1 mg-wt. = 0.1 * 10^-6 * 9.8 N = Gm1m2/r^2
m1 = 40 kg m2 =15 kg and r = 0.2 m
Put in and find G</span>
Answer: no
Explanation: we need a picture
Answer:
Option B is correct.
Explanation:
The resistance of a material or wire is represented by the formula below.
R=(ρL)/A
where
- R is resistance of wire
- ρ is the resistivity of the material
- A is the cross sectional area of wire
- L is length of wire
Resistance increases with increase in length and resistivity which means options C and D are wrong.
A=(π
)/4
An increase in diameter will result in a proportional increase in area
From the resistance formula, an increase in area will cause a reduction in the resistance of the material.Thus increased diameter of wire will lower the resistance of wire. Option B is correct
Have a great day
<u>Analysing the Question:</u>
We know that equilibrium is the state of a body when it has equal and opposite forces being applied on it
In this case, a net downward force of 496N is being applied and a net upward force of (106 + 106 + 142 + x) N
<u>Finding the missing force:</u>
Since we have to achieve equilibrium, the net upward forces have to be equal to the net downward forces
So, (106 + 106 + 142 + x) = 496
354 + x = 496
x = 496 - 354
x = 142 N
Therefore, the missing force is 142 N