Answer:
Four charges of equal magnitude sitting at the vertices of a square
Explanation:
We can arrive at such a situation by thinking of a simple example first, a configuration of two charges. The force acting on the middle point of a straight line joining the two points(charges) will be zero. That is, the net Electric field will be zero as they cancel out being equal in magnitude and opposite in direction.
Now, we can extend this idea to a square having charge q at each vertex. If we put 'p' at the geometric center, we can see that the Electric fields along the diagonals cancel out due to the charges at the diagonally opposite vertices(refer to the figure attached). Actually, the only requirement is that the diagonally opposite charges are equal.
We can further take this to 3 dimensions. Consider a cube having charges of equal magnitude at each vertex. In this case, the point 'p' will yet again be the geometric center as the Electric field due to the diagonally opposite charges will cancel out.
Answer:
a. Both wires have the same resistivity
Explanation:
For the resistance of a wire , following formula holds good .
R = ρ l / S , R is resistance , l is length , S is cross sectional area and ρ is resistivity of the material that the wire is made of. Resistance is dependent on length and cross sectional area but resistivity does not depend upon length or cross sectional area . It only depends upon the type of material.
If we replace copper wire with aluminium wire , then resistivity will change .
Hence , since the wire remains made of copper , resistivity will not change.
Answer:
explanation of this effect is the photoelectric effect
Explanation:
Let's describe the process, when light of large wavelength falls, this implies a small energy, according to Planck's equation
E = h f =
the energy of the photons is not enough to carry out an electronic transition between two states of the material, when we decrease the wavelength (the energy of the photons increases), the point is reached where the energy of the beam is equal to some energy of a transition, by which the electrons are promoted and since we can see a certain charge, as the atoms are neutral, some electrons must be removed from the material, this is represented in the macroscopic case as the work function of the material, consequently a unbalanced load that is what we can measure.
When we increase the lightning intensity, what we do is that we increase the number of photons and if each photon can remove an electron, by removing the electrons the difference between it and the positive charge (fixed in the nuclei) increases.
We can analyze the interaction of the photon and the electron as a particular collision.
The explanation of this effect was made by Einstein in his explained of the photoelectric effect
-- There is no need to develop the pictures. They are available immediately in a digital camera.
-- There is no change in the teacher from one picture to the next.
-- The distance the watermelon falls from the teacher in each new picture is more in each picture than in the picture before it. (C)