The first dissociation for H2X:
H2X +H2O ↔ HX + H3O
initial 0.15 0 0
change -X +X +X
at equlibrium 0.15-X X X
because Ka1 is small we can assume neglect x in H2X concentration
Ka1 = [HX][H3O]/[H2X]
4.5x10^-6 =( X )(X) / (0.15)
X = √(4.5x10^-6*0.15)
∴X = 8.2 x 10-4 m
∴[HX] & [H3O] = 8.2x10^-4
the second dissociation of H2X
HX + H2O↔ X^2 + H3O
8.2x10^-4 Y 8.2x10^-4
Ka2 for Hx = 1.2x10^-11
Ka2 = [X2][H3O]/[HX]
1.2x10^-11= y (8.2x10^-4)*(8.2x10^-4)
∴y = 1.78x10^-5
∴[X^2] = 1.78x10^-5 m
Answer:
Maybe they both have valence electrons and can be used in chemical reactions. I could be wrong, I don't have any exact answers.
Explanation:
the formation of cations by using electron dot structures are :
a) Al
.
Al . losing the three valence electrons makes the Al³⁺
.
b) Sr :
Sr : losing the two valence electrons makes Sr²⁺
c) Ba
: Ba , losing the two valence electrons makes it Ba²⁺
A Lewis electron dot diagram is a representation of the valence electrons of an atom that employments specks around the image of the element. The number of dots equals the number of valence electrons within the molecule. These dots are arranged to the right and left and over and underneath the symbol, with no more than two dots on a side. Cations are the positive ions shaped by the loss of one or more electrons. The foremost commonly shaped cations of the representative elements are those that include the loss of all of the valence electrons.
To know more about the lewis electron dot diagram refer to the link brainly.com/question/14191114?referrer=searchResults.
#SPJ9
Answer:
1. Acids
2. Its molecular arrangement
3. Very acidic
4. Unsaturated
5. Apple juice
Explanation:
1. Acids have pH less than 7
2. Water molecules have a polar arrangement of the oxygen and hydrogen atoms—one side (hydrogen) has a positive electrical charge and the other side (oxygen) had a negative charge.3. Very acidic
4. Unsaturated solutions are solutions in which the amount of dissolved solute is less than the saturation point of the solvent (at that specific temperature gradient).
5. The lower the pH, the more hydrogen molecules.
Answer:
Explanation:
Oxygen is one of the most abundant elements on this planet. Our atmosphere is 21% free elemental oxygen. Oxygen is also extensively combined in compounds in the earths crust, such as water (89%) and in mineral oxides. Even the human body is 65% oxygen by mass.
Free elemental oxygen occurs naturally as a gas in the form of diatomic molecules, O2 (g). Oxygen exhibits many unique physical and chemical properties. For example, oxygen is a colorless and odorless gas, with a density greater than that of air, and a very low solubility in water. In fact, the latter two properties greatly facilitate the collection of oxygen in this lab. Among the unique chemical properties of oxygen are its ability to support respiration in plants and animals, and its ability to support combustion.
In this lab, oxygen will be generated as a product of the decomposition of hydrogen peroxide. A catalyst is used to speed up the rate of the decomposition reaction, which would otherwise be too slow to use as a source of oxygen. The catalyst does not get consumed by the reaction, and can be collected for re-use once the reaction is complete. The particular catalyst used in this lab is manganese(IV) oxide.