Answer:
the height reached is = 0.458 [m]
Explanation:
We need to make a sketch of the ball and see the location of the reference point where the potential energy is zero. But the kinetic energy will be defined by the following expression:
![Ek=\frac{1}{2} *m*v^{2} \\where:Ek= kinetic energy [J]\\m = mass of the ball [kg]\\v = velocity of the ball [m/s]](https://tex.z-dn.net/?f=Ek%3D%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%20%5C%5Cwhere%3AEk%3D%20kinetic%20energy%20%5BJ%5D%5C%5Cm%20%3D%20mass%20of%20the%20ball%20%5Bkg%5D%5C%5Cv%20%3D%20velocity%20of%20the%20ball%20%5Bm%2Fs%5D)
Replacing the values on the equation we have:
![Ek=\frac{1}{2}*(2)*(3^{2} )\\ Ek=9[J]\\](https://tex.z-dn.net/?f=Ek%3D%5Cfrac%7B1%7D%7B2%7D%2A%282%29%2A%283%5E%7B2%7D%20%29%5C%5C%20Ek%3D9%5BJ%5D%5C%5C)
This kinetic energy will be transformed in potential energy in the moment when the ball starts to rolling up. Therefore the maximum height reached by the ball depends of the initial velocity given to the ball.
![Ek=Ep\\where\\Ep=potential energy [J]\\Ep=m*g*h\\where\\g=gravity = 9.81[m/s^2]\\h=height reached [m]\\](https://tex.z-dn.net/?f=Ek%3DEp%5C%5Cwhere%5C%5CEp%3Dpotential%20energy%20%5BJ%5D%5C%5CEp%3Dm%2Ag%2Ah%5C%5Cwhere%5C%5Cg%3Dgravity%20%3D%209.81%5Bm%2Fs%5E2%5D%5C%5Ch%3Dheight%20reached%20%5Bm%5D%5C%5C)
Now we have:
![h=\frac{Ep}{m*g} \\h=\frac{9}{2*9.81} \\\\h=0.45 [m]](https://tex.z-dn.net/?f=h%3D%5Cfrac%7BEp%7D%7Bm%2Ag%7D%20%5C%5Ch%3D%5Cfrac%7B9%7D%7B2%2A9.81%7D%20%5C%5C%5C%5Ch%3D0.45%20%5Bm%5D)
In that moment when the ball reach the 0.45 [m] the potencial energy will be maximum and equal to the kinetic energy when the ball has a velocity of 3[m/s]
B. They came up with the term “radioactivity.”
C. They conducted experiments with uranium-containing minerals and pure uranium.
E. They discovered two new radioactive elements
Answer:
Where is the graph??
If a car travels from zero to 4 m/s ins 8 sec
a = 4 / 8 = .5 m/s^2
V (2) = 2 * .5 = 1 m/s after 2 sec
S = V t + 1/2 a t^2
S = 1 * 3.9 + 1/2 * 1/2 *3.9^2 = 3.9 + 3.80 = 7.70 m from 2 to 5.9 sec
Check:
Total distance traveled = 1/2 a t^2 = 5.9^2 / 4 = 8.70 m
Distance traveled in 2 sec = 1/2 * 1/2 * 4 = 1 m
Total distance from 2 to 5.9 = 8.7 - 1 = 7.7 m agreeing with thw above
Answer: 0.798 m
Explanation:
Given
Mass of the spring oscillator, m = 1.48 kg
Force constant of the spring, k = 35.4 N/m
Speed of oscillation, v = 3.9 m/s
Kinetic Energy = 1/2 mv²
Kinetic Energy = 1/2 * 1.48 * 3.9²
KE = 0.5 * 22.5108
KE = 11.26 J
Using the law of conservation of Energy. The Potential Energy of the system is equal to Kinetic Energy of the system
KE = PE
PE = 1/2kx²
11.26 = 1/2 * 35.4 * x²
11.26 = 17.7x²
x² = 11.26 / 17.7
x² = 0.6362
x = √0.6362
x = 0.798 m