Answer:
See attached document
Explanation:
Entire process for deriving the asked expression dV across the bridge as function of dP is illustrated in the attachment below.
The document gives a step-by step process for arriving at the expression. However, manipulation of algebraic equations is skipped for the conciseness of the document.
It also gives the expression for the case when all resistors have different nominal values.
<span>Place a test charge in the middle. It is 2cm away from each charge.
The electric field E= F/Q where F is the force at the point and Q is the charge causing the force in this point.
The test charge will have zero net force on it. The left 30uC charge will push it to the right and the right 30uC charge will push it to the left. The left and right force will equal each other and cancel each other out.
THIS IS A TRICK QUESTION.
THe electric field exactly midway between them = 0/Q = 0.
But if the point moves even slightly you need the following formula
F= (1/4Piε)(Q1Q2/D^2)
Assume your test charge is positive and make sure you remember two positive charges repel, two unlike charges attract. Draw the forces on the test charge out as vectors and find the magnetude of the force, then divide by the total charge to to find the electric field strength:)</span>
The second one is correct not sure about the first one sorry