1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
luda_lava [24]
3 years ago
11

I will pick the most Brainliest but... i need u to tell me how too

Physics
2 answers:
katovenus [111]3 years ago
8 0

Answer:

I think it’s a

Explanation:

katrin [286]3 years ago
6 0

Answer:

It will accelerate option A

Explanation:

When you drop anything it will continue to accelerate untill it reaches a max speed or friction forces it to slow down or stop.

You might be interested in
a ultrasonic wave at 8x10^4 Hz is emitted into a vien where the speed of sound in blood is 1570 m/s. the wave reflects off the r
Aneli [31]

Answer: 0.392 m/s

Explanation:

The Doppler shift equation is:

f'=\frac{V+V_{o}}{V-V_{s}} f

Where:

f=8(10)^{4} Hz is the actual frequency of the sound wave

f'=8.002(10)^{4} Hz is the "observed" frequency

V=1570 m/s is the speed of sound

V_{o}=0 m/s is the velocity of the observer, which is stationary

V_{s} is the velocity of the source, which are the red blood cells

Isolating V_{s}:

V_{s}=\frac{V(f'-f)}{f'}

V_{s}=\frac{1570 m/s(8.002(10)^{4} Hz-8(10)^{4} Hz)}{8.002(10)^{4} Hz}

Finally:

V_{s}=0.392 m/s

3 0
3 years ago
If an object has a fast velocity, the dots on a ticker tape diagram will be _____.
Gala2k [10]

Answer:

If an object has a fast velocity, the dots on a ticker tape diagram will be far apart.

7 0
3 years ago
Read 2 more answers
Suppose an electron is trapped within a small region and the uncertainty in its position is 24.0 x 10-15 m. What is the minimum
Alina [70]

Answer:

  • Uncertainty in position (∆x) = 24 × 10⁻¹⁵ m
  • Uncertainty in momentum (∆P) = ?
  • Planck's constant (h) = 6.26 × 10⁻³⁴ Js

\longrightarrow \:  \:  \sf\Delta x .\Delta p =  \dfrac{h}{4\pi}

\longrightarrow \:  \:  \sf24 \times  {10}^{ - 15}  .\Delta p =  \dfrac{6.26 \times  {10}^{ - 34}} {4 \times  \frac{22}{7} }

\longrightarrow \:  \:  \sf24 \times  {10}^{ - 15}  .\Delta p =  \dfrac{6.26 \times  {10}^{ - 34}} { \frac{88}{7} }

\longrightarrow \:  \:  \sf24 \times  {10}^{ - 15}  .\Delta p =  \dfrac{6.26 \times  {10}^{ - 34} \times 7} { 8 }

\longrightarrow \:  \:  \sf\Delta p =  \dfrac{43.82 \times  {10}^{ - 34} } { 8  \times 24 \times  {10}^{ - 15} }

\longrightarrow \:  \:  \sf\Delta p =  \dfrac{43.82 \times  {10}^{ - 34} } { 192 \times  {10}^{ - 15} }

\longrightarrow \:  \:  \sf\Delta p =  \dfrac{43.82 \times  {10}^{ - 34}  \times  {10}^{15} } { 192}

\longrightarrow \:  \:  \sf\Delta p =  \dfrac{43.82 \times  {10}^{ -19}   } { 192}

\longrightarrow \:  \:  \sf\Delta p =  \dfrac{4382 \times  {10}^{ - 2}  \times  {10}^{ -19}   } { 192}

\longrightarrow \:  \:  \sf\Delta p =  \dfrac{4382 \times  {10}^{ - 21}   } { 192}

\longrightarrow \:  \:  \sf\Delta p = 22.822\times  {10}^{ - 21}

\longrightarrow \:  \:  \sf\Delta p = 2.2822 \times  {10}^{1} \times  {10}^{ - 21}

\longrightarrow \:  \: \underline{ \boxed{ \red{  \bf\Delta p = 2.2822 \times  {10}^{ - 20}  \:  kg/ms}}}

4 0
3 years ago
1. Is this circuit SERIES or PARALLEL?
Setler79 [48]

Answer:

Series

Explanation:

Because I listen to my science teacher

3 0
3 years ago
A playground merry-go-round has a radius of 4.6 m and a moment of inertia of 200 kg-m2 and turns with negligible friction about
tankabanditka [31]

Answer:

8050 J

Explanation:

Given:

r = 4.6 m

I = 200 kg m²

F = 26.0 N

t = 15.0 s

First, find the angular acceleration.

∑τ = Iα

Fr = Iα

α = Fr / I

α = (26.0 N) (4.6 m) / (200 kg m²)

α = 0.598 rad/s²

Now you can find the final angular velocity, then use that to find the rotational energy:

ω = αt

ω = (0.598 rad/s²) (15.0 s)

ω = 8.97 rad/s

W = ½ I ω²

W = ½ (200 kg m²) (8.97 rad/s)²

W = 8050 J

Or you can find the angular displacement and find the work done that way:

θ = θ₀ + ω₀ t + ½ αt²

θ = ½ (0.598 rad/s²) (15.0 s)²

θ = 67.3 rad

W = τθ

W = Frθ

W = (26.0 N) (4.6 m) (67.3 rad)

W = 8050 J

6 0
3 years ago
Other questions:
  • What is the intensity in W/m2 of a laser beam used to burn away cancerous tissue that, when 85.0% absorbed, puts 470 J of energy
    5·1 answer
  • What must be the distance in meters between point charge q1 = 30.3 µC and point charge q2 = -68.2 µC for the electrostatic force
    7·1 answer
  • A train whose proper length is 1200 m passes at a high speed through a station whose platform measures 900 m, and the station ma
    10·1 answer
  • A passenger on your boat falls overboard. what should you do first?
    6·1 answer
  • At t = 0, object A is dropped from the roof of a building. At the same instant, object B is dropped from a window 10 m below the
    11·1 answer
  • Can you have a positive velocity but a negative acceleration? I need this to complete my physics hw :/
    12·1 answer
  • What is a prediction
    12·2 answers
  • A particle moves in a velocity field V(x, y) = x2, x + y2 . If it is at position (x, y) = (7, 2) at time t = 3, estimate its loc
    14·1 answer
  • A van accelerates from 4m/s to 20m/s in 8s. How far does it travel in this time?​
    8·1 answer
  • Which of the following is NOT a characteristic of noble gases?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!