Answer:
(a) α = -0.16 rad/s²
(b) t = 33.2 s
Explanation:
(a)
Applying 3rd equation of motion on the circular motion of the tire:
2αθ = ωf² - ωi²
where,
α = angular acceleration = ?
ωf = final angular velocity = 0 rad/s (tire finally stops)
ωi = initial angular velocity = 5.45 rad/s
θ = Angular Displacement = (14.4 rev)(2π rad/1 rev) = 28.8π rad
Therefore,
2(α)(28.8π rad) = (0 rad/s)² - (5.45 rad/s)²
α = -(29.7 rad²/s²)/(57.6π rad)
<u>α = -0.16 rad/s²</u>
<u>Negative sign shows deceleration</u>
<u></u>
(b)
Now, we apply 1st equation of motion:
ωf = ωi + αt
0 rad/s = 5.45 rad/s + (-0.16 rad/s²)t
t = (5.45 rad/s)/(0.16 rad/s²)
<u>t = 33.2 s</u>
Answer:
Therefore, the revolutions that each tire makes is:

Explanation:
We can use the following equation:
(1)
The angular acceleration is:



and the initial angular velocity is:



Now, using equation (1) we can find the revolutions of the tire.

Therefore, the revolutions that each tire makes is:

I hope it helps you!
Answer:
Part a)

Part b)

Explanation:
As we know that electric force on electric charge is given as

here we have

E = 153 N/C
now force is given as

Gravitational force on electric charge near surface of earth is given as


now the ratio of two forces is given as


Part b)
Now the ball is balanced by the electric force and the force of gravity on it
so here we have



here we have

Answer:

Explanation:
As we know that the acceleration of a point on the rim of the disc is in two directions
1) tangential acceleration which is given as

2) Centripetal acceleration

here we know that


now we know that net linear acceleration is given as

so we have


Answer: As with all metals, the alkali metals are malleable, ductile, and are good conductors of heat and electricity. The alkali metals are softer than most other metals.
Alkaline earth metals
The alkaline earth elements are metallic elements found in the second group of the periodic table
Explanation: