The force between them <em>decreases</em><em>,</em> as the square of the distance.
For example ...
-- If you move them apart to double the original distance, the force becomes (1/2²) = 1/4 of the original force.
-- If you move them apart to 3 times the original distance, the force becomes (1/3²) = 1/9 of the original force.
-- If you move them apart to 5 times the original distance, the force becomes (1/5²) = 1/25 of the original force.
(Gravity works exactly the same way.)
1). D. Combined Gas Law
3.) D. Pressure and temperature
4.) C. Boyles law
It would need to be over 20 because if the load of the Pulley E is 20 and the effort is 20, then they will be equal and the Pulley would not move, so your answer is at least 20
Answer:
1) q₁ = 12.987 cm
, b) L = 17.987 cm
, c) m = 179.87
Explanation:
We can solve the geometric optics exercises with the equation of the constructor
1 / f = 1 / p + 1 / q
where f is the focal length, p and q are the distance to the object and the image respectively.
Let's apply this equation to our case
1) f = 5mm = 0.5 cm
p₁ = 5.2 mm = 0.52 cm
h = 0.1 mm = 0.01 cm
1 / q₁ = 1 / f- 1 / p
1 / q₁ = 1 / 0.5 - 1 / 0.52 = 2 - 1.923
1 / q₁ = 0.077
q₁ = 12.987 cm
2) in this part they tell us that the eyepiece creates an image at infinity, therefore the object that comes from being at the focal length of the eyepiece
p₂ = 5 cm
The absolute thing that goes through the two lenses is
L = q₁ + p₂
L = 12.987 +5
L = 17.987 cm
3) This lens configuration forms the so-called microscope, whose expression for the magnifications
m = -L / f_target 25 cm / f_ocular
m = - 17.987 / 0.5 25 / 5.0
m = 179.87