Answer:
The radius of the loop is 20.66 km
Explanation:
let the radius of the loop be r
mass of airplane is m
At the top, the pilot experiences two radial forces, which are
1) Gravitational force is mg
2) Centrifugal forces mv²/r out of the center
When the pilot experiences no weight,
then, mg = mv²/r
r = v² / g
= 450² / 9.8
= 20.66 x 10³3
= 20.66 km
The given question is incomplete. The complete question is as follows.
A 75-g bullet is fired from a rifle having a barrel 0.540 m long. Choose the origin to be at the location where the bullet begins to move. Then the force (in newtons) exerted by the expanding gas on the bullet is
, where x is in meters. Determine the work done by the gas on the bullet as the bullet travels the length of the barrel.
Explanation:
We will calculate the work done as follows.
W = 
= 
= ![[14000x + 5000x^{2} - 8666.7x^{3}]^{0.54}_{0}](https://tex.z-dn.net/?f=%5B14000x%20%2B%205000x%5E%7B2%7D%20-%208666.7x%5E%7B3%7D%5D%5E%7B0.54%7D_%7B0%7D)
= 7560 + 1458 - 1364.69
= 7653.31 J
or, = 7.65 kJ (as 1 kJ = 1000 J)
Thus, we can conclude that the work done by the gas on the bullet as the bullet travels the length of the barrel is 7.65 kJ.
Answer:
Though you have not gave the choices, I do believe it is “testing”
Explanation:
It’s c, the toy car changes direction
Answer:

Explanation:
given.
magnification(m) = 400 x
focal length (f_0)= 0.6 cm
distance between eyepiece and lens (L)= 16 cm
Near point (N) = 25 cm
focal length of the eyepiece (f_e)= ?
using equation




