Answer:
(a) T = W/2(1-tanθ) (b) 39.81°
Explanation:
(a) The equation for tension (T) can be derived by considering the summation of moment in the clockwise direction. Thus:
Summation of moment in clockwise direction is equivalent to zero. Therefore,
T*l*(sinθ) + W*(l/2)*cosθ - T*l*cosθ = 0
T*l*(cosθ - sinθ) = W*(l/2)*cosθ
T = W*cosθ/2(cosθ - sinθ)
Dividing both the numerator and denominator by cosθ, we have:
T = [W*cosθ/cosθ]/2[(cosθ - sinθ)/cosθ] = W/2(1-tanθ)
(b) If T = 3W, then:
3W = W/2(1-tanθ),
Further simplification and rearrangement lead to:
1 - tanθ = 1/6
tanθ = 1 - (1/6) = 5/6
θ = tan^(-1) 5/6 = 39.81°
Answer:
Option D. w1[x] w2[u] w2[y] w1[y] w3[x] w3[u] w1[z]
Explanation:
The execution in the option D is correct. This is because there is more than one reasonable criterion.
Answer:
1.2727 stokes
Explanation:
specific gravity of fluid A = 1.65
Dynamic viscosity = 210 centipoise
<u>Calculate the kinematic viscosity of Fluid A </u>
First step : determine the density of fluid A
Pa = Pw * Specific gravity = 1000 * 1.65 = 1650 kg/m^3
next : convert dynamic viscosity to kg/m-s
210 centipoise = 0.21 kg/m-s
Kinetic viscosity of Fluid A = dynamic viscosity / density of fluid A
= 0.21 / 1650 = 1.2727 * 10^-4 m^2/sec
Convert to stokes = 1.2727 stokes
Explanation:
Styrene is a vinyl monomer in which there is a carbon carbon double bond.
The polymerization of the styrene, which is initiated by using a free radical which reacts with the styrene and the compound thus forms react again and again to form polystyrene (PS).
The equation is shown below as:
⇒ ![\begin{matrix}&C_6H_5 \\&|\\ -[-H_2C & -CH-]-_n\end{matrix}](https://tex.z-dn.net/?f=%5Cbegin%7Bmatrix%7D%26C_6H_5%20%5C%5C%26%7C%5C%5C%20-%5B-H_2C%20%26%20-CH-%5D-_n%5Cend%7Bmatrix%7D)
Answer:
50°
Explanation:
Complementary angles add up to 90°.
Supplementary angles add up to 180°.
Vertical angles are equal.
A + B = 90°
B = C
C = 180° − 140°
C = 40°
B = 40°
A = 50°