1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Viefleur [7K]
3 years ago
11

What should one do with a load if one is going to leave a jack under a load?

Engineering
1 answer:
Masja [62]3 years ago
8 0
Get another person to do it?
You might be interested in
Pipe (2) is supported by a pin at bracket C and by tie rod (1). The structure supports a load P at pin B. Tie rod (1) has a diam
Galina-37 [17]

Answer:

P_max = 25204 N

Explanation:

Given:

- Rod 1 : Diameter D = 12 mm , stress_1 = 110 MPa

- Rod 2: OD = 48 mm , thickness t = 5 mm , stress_2 = 65 MPa

- x_1 = 3.5 mm ; x_2 = 2.1 m ; y_1 = 3.7 m

Find:

- Maximum Force P_max that this structure can support.

Solution:

- We will investigate the maximum load that each Rod can bear by computing the normal stress due to applied force and the geometry of the structure.

- The two components of force P normal to rods are:

               Rod 1 : P*cos(Q)  

               Rod 2: - P*sin(Q)

where Q: angle subtended between x_1 and Rod 1 @ A. Hence,

               Q = arctan ( y_1 / x_1)

               Q = arctan (3.7 / 2.1 ) = 60.422 degrees.

- The normal stress in each Rod due to normal force P are:

               Rod 1 : stress_1 = P*cos(Q)  / A_1

               Rod 2: stress_2 = - P*sin(Q)  / A_2

- The cross sectional Area of both rods are A_1 and A_2:

               A_1 = pi*D^2 / 4

               A_2 = pi*(OD^2 - ID^2) / 4

- The maximum force for the given allowable stresses are:

               Rod 1: P_max =  stress_1 * A_1 / cos(Q)

                          P_max = (110*10^6)*pi*0.012^2 / 4*cos(60.422)

                          P_max = 25203.61848 N

               Rod 2: P_max =  stress_2 * A_2 / sin(Q)

                          P_max = (65*10^6)*pi*(0.048^2 - 0.038^2) / 4*sin(60.422)

                          P_max = 50483.4 N

- The maximum force that the structure can with-stand is governed by the member of the structure that fails first. In our case Rod 1 with P_max = 25204 N.

             

8 0
3 years ago
Explain why different types of equipment are required for proper conditioning of air
blagie [28]

Answer:

 Different types of equipment are required for proper conditioning of air because every air conditional space faces some geometrical and environmental issues or problems. There are some different types of equipment used for conditioning of air that are air system, water system and air-water system. In many cases the air conditioning of the system varies with size of the equipment.  

8 0
3 years ago
An Ideal gas is being heated in a circular duct as while flowing over an electric heater of 130 kW. The diameter of duct is 500
Rashid [163]

Answer:

Exit temperature = 32 °C

Explanation:

We are given;

Initial Pressure;P1 = 100 KPa

Cp =1000 J/kg.K = 1 KJ/kg.k

R = 500 J/kg.K = 0.5 Kj/Kg.k

Initial temperature;T1 = 27°C = 273 + 27K = 300 K

volume flow rate;V' = 15 m³/s

W = 130 Kw

Q = 80 Kw

Using ideal gas equation,

PV' = m'RT

Where m' is mass flow rate.

Thus;making m' the subject, we have;

m' = PV'/RT

So at inlet,

m' = P1•V1'/(R•T1)

m' = (100 × 15)/(0.5 × 300)

m' = 10 kg/s

From steady flow energy equation, we know that;

m'•h1 + Q = m'h2 + W

Dividing through by m', we have;

h1 + Q/m' = h2 + W/m'

h = Cp•T

Thus,

Cp•T1 + Q/m' = Cp•T2 + W/m'

Plugging in the relevant values, we have;

(1*300) - (80/10) = (1*T2) - (130/10)

Q and M negative because heat is being lost.

300 - 8 + 13 = T2

T2 = 305 K = 305 - 273 °C = 32 °C

13000 + 300 - 8000 = T2

6 0
3 years ago
Write torsion equation and explain the importance of each components.<br>​
Elanso [62]
The equations are based on the following assumptions

1) The bar is straight and of uniform section
2) The material of the bar is has uniform properties.
3) The only loading is the applied torque which is applied normal to the axis of the bar.
4) The bar is stressed within its elastic limit.

Nomenclature

T = torque (Nm)
l = length of bar (m)
J = Polar moment of inertia.(Circular Sections) ( m^4)
J' = Polar moment of inertia.(Non circluar sections) ( m^4 )
K = Factor replacing J for non-circular sections.( m^4)
r = radial distance of point from center of section (m)
ro = radius of section OD (m)
τ = shear stress (N/m^2)
G Modulus of rigidity (N/m^2)
θ = angle of twist (radians)

4 0
3 years ago
Someone has suggested that the air-standard Otto cycle is more accurate if the two polytropic processes are replaced with isentr
omeli [17]

Answer:

q_net,in = 585.8 KJ/kg

q_net,out = 304 KJ/kg

n = 0.481

Explanation:

Given:

- The compression ratio r = 8

- The pressure at state 1, P_1 = 95 KPa

- The minimum temperature at state 1, T_L = 15 C

- The maximum temperature T_H = 900 C

- Poly tropic index n = 1.3

Find:

a) Determine the heat transferred to and rejected from this cycle

b) cycle’s thermal efficiency

Solution:

- For process 1-2, heat is rejected to sink throughout. The Amount of heat rejected q_1,2, can be computed by performing a Energy balance as follows:

                                   W_out - Q_out = Δ u_1,2

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                         c_v*(T_2 - T_L) = R*(T_2 - T_L)/n-1 - q_1,2

- Using polytropic relation we will convert T_2 = T_L*r^(n-1):

                  c_v*(T_L*r^(n-1) - T_L) = R*(T_1*r^(n-1) - T_L)/n-1 - q_1,2

- Hence, we have:

                             q_1,2 = T_L *(r^(n-1) - 1)* ( (R/n-1) - c_v)

- Plug in the values:

                             q_1,2 = 288 *(8^(1.3-1) - 1)* ( (0.287/1.3-1) - 0.718)

                            q_1,2= 60 KJ/kg

- For process 2-3, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                          Q_in = Δ u_2,3

                                         q_2,3 = u_3 - u_2

                                         q_2,3 = c_v*(T_H - T_2)  

- Again, using polytropic relation we will convert T_2 = T_L*r^(n-1):

                                         q_2,3 = c_v*(T_H - T_L*r^(n-1) )    

                                         q_2,3 = 0.718*(1173-288*8(1.3-1) )

                                        q_2,3 = 456 KJ/kg

- For process 3-4, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                     q_3,4 - w_in = Δ u_3,4

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                           c_v*(T_4 - T_H) = - R*(T_4 - T_H)/1-n +  q_3,4

- Using polytropic relation we will convert T_4 = T_H*r^(1-n):

                  c_v*(T_H*r^(1-n) - T_H) = -R*(T_H*r^(1-n) - T_H)/n-1 + q_3,4

- Hence, we have:

                             q_3,4 = T_H *(r^(1-n) - 1)* ( (R/1-n) + c_v)

- Plug in the values:

                             q_3,4 = 1173 *(8^(1-1.3) - 1)* ( (0.287/1-1.3) - 0.718)

                            q_3,4= 129.8 KJ/kg

- For process 4-1, heat is lost from the system. The Amount of heat rejected q_4,1, can be computed by performing a Energy balance as follows:

                                          Q_out = Δ u_4,1

                                         q_4,1 = u_4 - u_1

                                         q_4,1 = c_v*(T_4 - T_L)  

- Again, using polytropic relation we will convert T_4 = T_H*r^(1-n):

                                         q_4,1 = c_v*(T_H*r^(1-n) - T_L )    

                                         q_4,1 = 0.718*(1173*8^(1-1.3) - 288 )

                                        q_4,1 = 244 KJ/kg

- The net gain in heat can be determined from process q_3,4 & q_2,3:

                                         q_net,in = q_3,4+q_2,3

                                         q_net,in = 129.8+456

                                         q_net,in = 585.8 KJ/kg

- The net loss of heat can be determined from process q_1,2 & q_4,1:

                                         q_net,out = q_4,1+q_1,2

                                         q_net,out = 244+60

                                         q_net,out = 304 KJ/kg

- The thermal Efficiency of a Otto Cycle can be calculated:

                                         n = 1 - q_net,out / q_net,in

                                         n = 1 - 304/585.8

                                         n = 0.481

6 0
3 years ago
Other questions:
  • Zona intermedia de pozos <br> Y<br> Efecto de inavasion
    6·1 answer
  • A bar of 75 mm diameter is reduced to 73mm by a cutting tool while cutting orthogonally. If the mean length of the cut chip is 7
    10·1 answer
  • What is a thermal reservoir?
    15·1 answer
  • Estudio de caso Teorema de Bayes. Las historias de casos clínicos indican que diversas enfermedades producen sistemas similares.
    14·1 answer
  • What is not required for current to flow through a conductor
    12·1 answer
  • Please I need help!<br><br> I need 1,2,&amp;3 drawn with front top and side view. Please help asap
    6·1 answer
  • Which component found in fertilizer is a known cancer-causing agent?
    11·2 answers
  • Which lists the order of Energy Career Pathways from the source to the customer?
    9·2 answers
  • What is the difference between the elements of design and the principles of design? Define at
    7·1 answer
  • Most equipment is cooled by bringing cold air in the front and ducting the heat out of the back. What is the term for where the
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!