Answer:
The distance from the entrance at which the boundary layers meet is 0.516m
The distance from the entrance at which the thermal boundary layers meet is 1.89m
Explanation:
For explanation, look at the attached file
1. Define <em>Viscosity</em>
In physics, <em>Viscosity</em> refers to the level of resistance of a fluid to flow due to internal friction, in other words, viscosity is the result of the magnitude of internal friction in a fluid, as measured by the force per unit area resisting uniform flow. For example, the honey is a fluid with high viscosity while the water has low viscosity.
What are the main differences between viscous and inviscid flows?
Viscous flows are flows that has a thick, sticky consistency between solid and liquid, contain and conduct heat, does not have a rest frame mass density and whose motion at a fixed point always remains constant. Inviscid flows, on the other hand, are flows characterized for having zero viscosity (it does not have a thick, sticky consistency), for not containing or conducting heat, for the lack of steady flow and for having a rest frame mass density
Furthermore, viscous flows are much more common than inviscid flows, while this latter is often considered an idealized model since helium is the only fluid that can become inviscid.
Answer:
778.4°C
Explanation:
I = 700
R = 6x10⁻⁴
we first calculate the rate of heat that is being transferred by the current
q = I²R
q = 700²(6x10⁻⁴)
= 490000x0.0006
= 294 W/M
we calculate the surface temperature
Ts = T∞ + 
Ts = 


The surface temperature is therefore 778.4°C if the cable is bare
Answer: a)True
Explanation: Takt time is defined as the average time difference between the production of the two consecutive unit of goods by the manufacturer and this rate is matched with the demand of the customer. This is the time which is calculated to find the acceptable time for which the goods unit must be produced by the factory to meet the needs of the customer. Therefore , the statement is true that takt time is the rate at which a factory must produce to satisfy the customer's demand.