Answer: Colby we both dumb if we need brainly lol
Explanation:
Answer:
14 m/s
Explanation:
The motion of the book is a free fall motion, so it is an uniformly accelerated motion with constant acceleration g=9.8 m/s^2 towards the ground. Therefore we can find the final velocity by using the equation:

where
u = 0 is the initial speed
g = 9.8 m/s^2 is the acceleration
d = 10.0 m is the distance covered by the book
Substituting data, we find

The answer is 100mm/s. I hope this helps :)
The normal stress follows the formula written below:
σ = F/A
There are two types of stress, axial and tangential. Since we are only given with the dimension of the radius (and not the length), the possible stress is axial. So, the area is,
A = πr² = π(0.75 in)² = 1.767 in²
So,
σ = F/A = 500 lb/1.767 in² = <em>282.94 psi</em>
A vibrating stretched string has nodes or fixed points at each end. The string will vibrate in its fundamental frequency with just one anti node in the middle - this gives half a wave.

Rearranging for the wavelength



Therefore the longest wavelength standing wave that it can support is 14m